@misc{LouMaLinetal.2006, author = {Lou, Ying and Ma, Hui and Lin, Wen-Hui and Chu, Zhao-Quing and M{\"u}ller-R{\"o}ber, Bernd and Xu, Zhi-Hong and Xue, Hong-Wei}, title = {The highly charged region of plant beta-type phosphatidylinositol 4-kinase is involved in membrane targeting and phospholipid binding}, issn = {0167-4412}, doi = {10.1007/s11103-005-5548-x}, year = {2006}, abstract = {In Arabidopsis thaliana and Oryza sativa, two types of PI 4-kinase (PI4Ks) have been isolated and functionally characterized. The alpha-type PI4Ks (similar to 220 kDa) contain a PH domain, which is lacking in beta-type PI4Ks (similar to 120 kDa). beta-Type PI4Ks, exemplified by Arabidopsis AtPI4K beta and rice OsPI4K2, contain a highly charged repetitive segment designated PPC (Plant PI4K Charged) region, which is an unique domain only found in plant beta-type PI4Ks at present. The PPC region has a length of similar to 300 amino acids and harboring 11 (AtPI4K beta) and 14 (OsPI4K2) repeats, respectively, of a 20-aa motif. Studies employing a modified yeast-based "Sequence of Membrane- Targeting Detection'' system demonstrate that the PPC(OsPI4K2) region, as well as the former 8 and latter 6 repetitive motifs within the PPC region, are able to target fusion proteins to the plasma membrane. Further detection on the transiently expressed GFP fusion proteins in onion epidermal cells showed that the PPC(OsPI4K2) region alone, as well as the region containing repetitive motifs 1-8, was able to direct GFP to the plasma membrane, while the regions containing less repetitive motifs, i.e. 6, 4, 2 or single motif(s) led to predominantly intracellular localization. Agrobacterium-mediated transient expression of PPC-GFP fusion protein further confirms the membrane-targeting capacities of PPC region. In addition, the predominant plasma membrane localization of AtPI4Kb was mediated by the PPC region. Recombinant PPC peptide, expressed in E. coli, strongly binds phosphatidic acid, PI and PI4P, but not phosphatidylcholine, PI5P, or PI(4,5) P-2 in vitro, providing insights into potential mechanisms for regulating sub- cellular localization and lipid binding for the plant beta-type PI4Ks}, language = {en} }