@article{LuBlakesleyHimmelbergeretal.2013, author = {Lu, Guanghao and Blakesley, James C. and Himmelberger, Scott and Pingel, Patrick and Frisch, Johannes and Lieberwirth, Ingo and Salzmann, Ingo and Oehzelt, Martin and Di Pietro, Riccardo and Salleo, Alberto and Koch, Norbert and Neher, Dieter}, title = {Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors}, series = {Nature Communications}, volume = {4}, journal = {Nature Communications}, number = {1-2}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms2587}, pages = {8}, year = {2013}, abstract = {Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt\% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60.}, language = {en} } @article{PingelZenNeheretal.2009, author = {Pingel, Patrick and Zen, Achmad and Neher, Dieter and Lieberwirth, Ingo and Wegner, Gerhard and Allard, Sybille and Scherf, Ullrich}, title = {Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity}, issn = {0947-8396}, doi = {10.1007/s00339-008-4994-0}, year = {2009}, abstract = {Layers made from soluble low molecular weight polythiophene PQT-12 with low polydispersity exhibit a highly ordered structure and charge-carrier mobilities of the order of 10(-3) cm(2)/(V s), which we attribute to its proximity to monodispersity. We propose that polydispersity is a decisive factor with regard to structure formation and transport properties of soluble low molecular weight polythiophenes.}, language = {en} } @article{ZenSaphiannikovaNeheretal.2006, author = {Zen, Achmad and Saphiannikova, Marina and Neher, Dieter and Grenzer, J{\"o}rg and Grigorian, Souren A. and Pietsch, Ullrich and Asawapirom, Udom and Janietz, Silvia and Scherf, Ullrich and Lieberwirth, Ingo and Wegner, Gerhard}, title = {Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene)}, doi = {10.1021/Ma0521349}, year = {2006}, abstract = {Recently, two different groups have reported independently that the mobility of field-effect transistors made from regioregular poly(3-hexylthiophene) (P3HT) increases strongly with molecular weight. Two different models were presented: one proposing carrier trapping at grain boundaries and the second putting emphasis on the conformation and packing of the polymer chains in the thin layers for different molecular weights. Here, we present the results of detailed investigations of powders and thin films of deuterated P3HT fractions with different molecular weight. For powder samples, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to investigate the structure and crystallization behavior of the polymers. The GPC investigations show that all weight fractions possess a rather broad molecular weight distribution. DSC measurements reveal a strong decrease of the crystallization temperature and, most important, a significant decrease of the degree of crystallinity with decreasing molecular weight. To study the structure of thin layers in lateral and vertical directions, both transmission electron microscopy (TEM) and X-ray grazing incidence diffraction (GID) were utilized. These methods show that thin layers of the low molecular weight fraction consist of well-defined crystalline domains embedded in a disordered matrix. We propose that the transport properties of layers prepared from fractions of poly(3-hexylthiophene) with different molecular weight are largely determined by the crystallinity of the samples and not by the perfection of the packing of the chains in the individual crystallites}, language = {en} }