@article{ZhouPanZhangetal.2020, author = {Zhou, Suqiong and Pan, Yuanwei and Zhang, Jianguang and Li, Yan and Neumann, Falko and Schwerdtle, Tanja and Li, Wenzhong and Haag, Rainer}, title = {Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells}, series = {Nanoscale}, volume = {12}, journal = {Nanoscale}, number = {47}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/d0nr06570f}, pages = {24006 -- 24019}, year = {2020}, abstract = {Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate.}, language = {en} } @article{LiGaoSchlaichetal.2017, author = {Li, Mingjun and Gao, Lingyan and Schlaich, Christoph and Zhang, Jianguang and Donskyi, Ievgen S. and Yu, Guozhi and Li, Wenzhong and Tu, Zhaoxu and Rolff, Jens and Schwerdtle, Tanja and Haag, Rainer and Ma, Nan}, title = {Construction of Functional Coatings with Durable and Broad-Spectrum Antibacterial Potential Based on Mussel-Inspired Dendritic Polyglycerol and in Situ-Formed Copper Nanoparticles}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b10541}, pages = {35411 -- 35418}, year = {2017}, abstract = {A novel surface coating with durable broad-spectrum antibacterial ability was prepared based on mussel inspired dendritic polyglycerol (MI-dPG) embedded with copper nanoparticles (Cu NPs). The functional surface coating is fabricated via a facile dip-coating process followed by in situ reduction of copper ions with a MI-dPG coating to introduce Cu NPs into the coating matrix. This coating has been demonstrated to possess efficient long-term antibacterial properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and kanamycin-resistant E. coli through an "attract-kill-release" strategy. The synergistic antibacterial activity of the coating was shown by the combination of two functions of the contact killing, reactive oxygen species production and Cu ions released from the coating. Furthermore, this coating inhibited biofilm formation and showed good compatibility to eukaryotic cells. Thus, this newly developed Cu NP-incorporated MI-dPG surface coating may find potential application in the design of antimicrobial coating, such as implantable devices.}, language = {en} }