@article{LiMorenoSwittBedfordetal.2017, author = {Li, Shaoyang and Moreno Switt, Marcos and Bedford, Jonathan and Rosenau, Matthias and Heidbach, Oliver and Melnick, Daniel and Oncken, Onno}, title = {Postseismic uplift of the Andes following the 2010 Maule earthquake}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071995}, pages = {1768 -- 1776}, year = {2017}, abstract = {Postseismic surface deformation associated with great subduction earthquakes is controlled by asthenosphere rheology, frictional properties of the fault, and structural complexity. Here by modeling GPS displacements in the 6 years following the 2010 M-w 8.8 Maule earthquake in Chile, we investigate the impact of heterogeneous viscosity distribution in the South American subcontinental asthenosphere on the 3-D postseismic deformation pattern. The observed postseismic deformation is characterized by flexure of the South America plate with peak uplift in the Andean mountain range and subsidence in the hinterland. We find that, at the time scale of observation, over 2 orders of magnitude gradual increase in asthenosphere viscosity from the arc area toward the cratonic hinterland is needed to jointly explain horizontal and vertical displacements. Our findings present an efficient method to estimate spatial variations of viscosity, which clearly improves the fitting to the vertical signal of deformation. Lateral changes in asthenosphere viscosity can be correlated with the thermomechanical transition from weak subvolcanic arc mantle to strong subcratonic mantle, thus suggesting a stationary heterogeneous viscosity structure. However, we cannot rule out a transient viscosity structure (e.g., power law rheology) with the short time span of observation.}, language = {en} } @article{LiMorenoRosenauetal.2014, author = {Li, Shaoyang and Moreno, Marcos and Rosenau, Matthias and Melnick, Daniel and Oncken, Onno}, title = {Splay fault triggering by great subduction earthquakes inferred from finite element models}, series = {Geophysical research letters}, volume = {41}, journal = {Geophysical research letters}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2013GL058598}, pages = {385 -- 391}, year = {2014}, abstract = {We have investigated the influence that megathrust earthquake slip has on the activation of splay faults using a 2-D finite element method (FEM), taking into account the effects of gravity and variations in the frictional strength properties of splay faults. We simulated both landward-dipping and seaward-dipping splay fault geometries, and imposed depth-variable slip distributions of subduction events. Our results indicate that the two types of splay fault exhibit a similar behavior, with variations in frictional properties along the faults affecting only the seismic magnitude. The triggering process is controlled by a critical depth. Megathrust slip concentrated at depths shallower than the critical depth will favor normal displacement, while megathrust slip concentrated at depths deeper than the critical depth is likely to result in reverse motion. Our results thus provide a useful tool for predicting the activation of secondary faults and may have direct implications for tsunami hazard research.}, language = {en} } @article{MelnickMorenoQuinterosetal.2017, author = {Melnick, Daniel and Moreno, Marcos and Quinteros, Javier and Carlos Baez, Juan and Deng, Zhiguo and Li, Shaoyang and Oncken, Onno}, title = {The super-interseismic phase of the megathrust earthquake cycle in Chile}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071845}, pages = {784 -- 791}, year = {2017}, abstract = {Along a subduction zone, great megathrust earthquakes recur either after long seismic gaps lasting several decades to centuries or over much shorter periods lasting hours to a few years when cascading successions of earthquakes rupture nearby segments of the fault. We analyze a decade of continuous Global Positioning System observations along the South American continent to estimate changes in deformation rates between the 2010 Maule (M8.8) and 2015 Illapel (M8.3) Chilean earthquakes. We find that surface velocities increased after the 2010 earthquake, in response to continental-scale viscoelastic mantle relaxation and to regional-scale increased degree of interplate locking. We propose that increased locking occurs transiently during a super-interseismic phase in segments adjacent to a megathrust rupture, responding to bending of both plates caused by coseismic slip and subsequent afterslip. Enhanced strain rates during a super-interseismic phase may therefore bring a megathrust segment closer to failure and possibly triggered the 2015 event.}, language = {en} }