@misc{LaubrockKliegl2015, author = {Laubrock, Jochen and Kliegl, Reinhold}, title = {The eye-voice span during reading aloud}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86904}, year = {2015}, abstract = {Although eye movements during reading are modulated by cognitive processing demands, they also reflect visual sampling of the input, and possibly preparation of output for speech or the inner voice. By simultaneously recording eye movements and the voice during reading aloud, we obtained an output measure that constrains the length of time spent on cognitive processing. Here we investigate the dynamics of the eye-voice span (EVS), the distance between eye and voice. We show that the EVS is regulated immediately during fixation of a word by either increasing fixation duration or programming a regressive eye movement against the reading direction. EVS size at the beginning of a fixation was positively correlated with the likelihood of regressions and refixations. Regression probability was further increased if the EVS was still large at the end of a fixation: if adjustment of fixation duration did not sufficiently reduce the EVS during a fixation, then a regression rather than a refixation followed with high probability. We further show that the EVS can help understand cognitive influences on fixation duration during reading: in mixed model analyses, the EVS was a stronger predictor of fixation durations than either word frequency or word length. The EVS modulated the influence of several other predictors on single fixation durations (SFDs). For example, word-N frequency effects were larger with a large EVS, especially when word N-1 frequency was low. Finally, a comparison of SFDs during oral and silent reading showed that reading is governed by similar principles in both reading modes, although EVS maintenance and articulatory processing also cause some differences. In summary, the EVS is regulated by adjusting fixation duration and/or by programming a regressive eye movement when the EVS gets too large. Overall, the EVS appears to be directly related to updating of the working memory buffer during reading.}, language = {en} } @article{LaubrockKliegl2015, author = {Laubrock, Jochen and Kliegl, Reinhold}, title = {The eye-voice span during reading aloud}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.01437}, pages = {19}, year = {2015}, abstract = {Although eye movements during reading are modulated by cognitive processing demands, they also reflect visual sampling of the input, and possibly preparation of output for speech or the inner voice. By simultaneously recording eye movements and the voice during reading aloud, we obtained an output measure that constrains the length of time spent on cognitive processing. Here we investigate the dynamics of the eye-voice span (EVS), the distance between eye and voice. We show that the EVS is regulated immediately during fixation of a word by either increasing fixation duration or programming a regressive eye movement against the reading direction. EVS size at the beginning of a fixation was positively correlated with the likelihood of regressions and refixations. Regression probability was further increased if the EVS was still large at the end of a fixation: if adjustment of fixation duration did not sufficiently reduce the EVS during a fixation, then a regression rather than a refixation followed with high probability. We further show that the EVS can help understand cognitive influences on fixation duration during reading: in mixed model analyses, the EVS was a stronger predictor of fixation durations than either word frequency or word length. The EVS modulated the influence of several other predictors on single fixation durations (SFDs). For example, word-N frequency effects were larger with a large EVS, especially when word N-1 frequency was low. Finally, a comparison of SFDs during oral and silent reading showed that reading is governed by similar principles in both reading modes, although EVS maintenance and articulatory processing also cause some differences. In summary, the EVS is regulated by adjusting fixation duration and/or by programming a regressive eye movement when the EVS gets too large. Overall, the EVS appears to be directly related to updating of the working memory buffer during reading.}, language = {en} } @article{LaubrockKliegl2015, author = {Laubrock, Jochen and Kliegl, Reinhold}, title = {The eye-voice span during reading aloud}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, number = {1432}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.01432}, year = {2015}, abstract = {Although eye movements during reading are modulated by cognitive processing demands, they also reflect visual sampling of the input, and possibly preparation of output for speech or the inner voice. By simultaneously recording eye movements and the voice during reading aloud, we obtained an output measure that constrains the length of time spent on cognitive processing. Here we investigate the dynamics of the eye-voice span (EVS), the distance between eye and voice. We show that the EVS is regulated immediately during fixation of a word by either increasing fixation duration or programming a regressive eye movement against the reading direction. EVS size at the beginning of a fixation was positively correlated with the likelihood of regressions and refixations. Regression probability was further increased if the EVS was still large at the end of a fixation: if adjustment of fixation duration did not sufficiently reduce the EVS during a fixation, then a regression rather than a refixation followed with high probability. We further show that the EVS can help understand cognitive influences on fixation duration during reading: in mixed model analyses, the EVS was a stronger predictor of fixation durations than either word frequency or word length. The EVS modulated the influence of several other predictors on single fixation durations (SFDs). For example, word-N frequency effects were larger with a large EVS, especially when word N-1 frequency was low. Finally, a comparison of SFDs during oral and silent reading showed that reading is governed by similar principles in both reading modes, although EVS maintenance and articulatory processing also cause some differences. In summary, the EVS is regulated by adjusting fixation duration and/or by programming a regressive eye movement when the EVS gets too large. Overall, the EVS appears to be directly related to updating of the working memory buffer during reading.}, language = {en} } @article{SperlichSchadLaubrock2015, author = {Sperlich, Anja and Schad, Daniel and Laubrock, Jochen}, title = {When preview information starts to matter}, series = {Journal of cognitive psychology}, volume = {27}, journal = {Journal of cognitive psychology}, number = {5}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-5911}, doi = {10.1080/20445911.2014.993990}, pages = {511 -- 530}, year = {2015}, abstract = {How is reading development reflected in eye-movement measures? How does the perceptual span change during the initial years of reading instruction? Does parafoveal processing require competence in basic word-decoding processes? We report data from the first cross-sectional measurement of the perceptual span of German beginning readers (n = 139), collected in the context of the large longitudinal PIER (Potsdamer Intrapersonale Entwicklungsrisiken/Potsdam study of intra-personal developmental risk factors) study of intrapersonal developmental risk factors. Using the moving-window paradigm, eye movements of three groups of students (Grades 1-3) were measured with gaze-contingent presentation of a variable amount of text around fixation. Reading rate increased from Grades 1-3, with smaller increases for higher grades. Perceptual-span results showed the expected main effects of grade and window size: fixation durations and refixation probability decreased with grade and window size, whereas reading rate and saccade length increased. Critically, for reading rate, first-fixation duration, saccade length and refixation probability, there were significant interactions of grade and window size that were mainly based on the contrast between Grades 3 and 2 rather than Grades 2 and 1. Taken together, development of the perceptual span only really takes off between Grades 2 and 3, suggesting that efficient parafoveal processing presupposes that basic processes of reading have been mastered.}, language = {en} }