@article{RaabWesselSchirdewanetal.2006, author = {Raab, Corinna and Wessel, Niels and Schirdewan, Alexander and Kurths, J{\"u}rgen}, title = {Large-scale dimension densities for heart rate variability analysis}, issn = {1539-3755}, doi = {10.1103/Physreve.73.041907}, year = {2006}, abstract = {In this work, we reanalyze the heart rate variability (HRV) data from the 2002 Computers in Cardiology (CiC) Challenge using the concept of large-scale dimension densities and additionally apply this technique to data of healthy persons and of patients with cardiac diseases. The large-scale dimension density (LASDID) is estimated from the time series using a normalized Grassberger-Procaccia algorithm, which leads to a suitable correction of systematic errors produced by boundary effects in the rather large scales of a system. This way, it is possible to analyze rather short, nonstationary, and unfiltered data, such as HRV. Moreover, this method allows us to analyze short parts of the data and to look for differences between day and night. The circadian changes in the dimension density enable us to distinguish almost completely between real data and computer-generated data from the CiC 2002 challenge using only one parameter. In the second part we analyzed the data of 15 patients with atrial fibrillation (AF), 15 patients with congestive heart failure (CHF), 15 elderly healthy subjects (EH), as well as 18 young and healthy persons (YH). With our method we are able to separate completely the AF (rho(mu)(ls)=0.97 +/- 0.02) group from the others and, especially during daytime, the CHF patients show significant differences from the young and elderly healthy volunteers (CHF, 0.65 +/- 0.13; EH, 0.54 +/- 0.05; YH, 0.57 +/- 0.05; p < 0.05 for both comparisons). Moreover, for the CHF patients we find no circadian changes in rho(mu)(ls) (day, 0.65 +/- 0.13; night, 0.66 +/- 0.12; n.s.) in contrast to healthy controls (day, 0.54 +/- 0.05; night, 0.61 +/- 0.05; p=0.002). Correlation analysis showed no statistical significant relation between standard HRV and circadian LASDID, demonstrating a possibly independent application of our method for clinical risk stratification}, language = {en} } @article{WesselKonvickaWeidermannetal.2004, author = {Wessel, Niels and Konvicka, Jan and Weidermann, Frank and Nestmann, S. and Neugebauer, R. and Schwarz, U. and Wessel, A. and Kurths, J{\"u}rgen}, title = {Predicting thermal displacements in modular tool systems}, issn = {1054-1500}, year = {2004}, abstract = {In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated firstly from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE-algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and get again promising results. The thermally inducedaccuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems. errors can be estimated with 1-2 micrometer}, language = {en} } @article{WesselAssmusWeidermannetal.2004, author = {Wessel, Niels and Aßmus, Joerg and Weidermann, Frank and Konvicka, Jan and Nestmann, S. and Neugebauer, R. and Schwarz, Udo and Kurths, J{\"u}rgen}, title = {Modeling thermal displacements in modular tool systems}, year = {2004}, abstract = {In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated firstly from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE-algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and get again promising results. The thermally induced errors can be estimated with 1-2\${mu m}\$ accuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems.}, language = {en} } @article{WesselSchwarzSaparinetal.2002, author = {Wessel, Niels and Schwarz, Udo and Saparin, Peter and Kurths, J{\"u}rgen}, title = {Symbolic dynamics for medical data analysis}, isbn = {3-936142-09-2}, year = {2002}, abstract = {Observational data of natural systems, as measured in medical measurements are typically quite different from those obtained in laboratories. Due to the peculiarities of these data, wellknown characteristics, such as power spectra or fractal dimension, often do not provide a suitable description. To study such data, we present here some measures of complexity, which are basing on symbolic dynamics. Firstly, a motivation for using symbolic dynamics and measures of complexity in data analysis based on the logistic map is given and next, two applications to medical data are shown. We demonstrate that symbolic dynamics is a useful tool for the risk assessment of patients after myocardial infarction as well as for the evaluation of th e architecture of human cancellous bone.}, language = {en} } @unpublished{KurthsVossWittetal.1994, author = {Kurths, J{\"u}rgen and Voss, A. and Witt, Annette and Saparin, P. and Kleiner, H. J. and Wessel, Niels}, title = {Quantitative analysis of heart rate variability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13470}, year = {1994}, abstract = {In the modern industrialized countries every year several hundred thousands of people die due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring, highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV. Especially, some complexity measures that are basing on symbolic dynamics as well as a new measure, the renormalized entropy, detect some abnormalities in the HRV of several patients who have been classified in the low risk group by traditional methods. A combination of these complexity measures with the parameters in the frequency domain seems to be a promising way to get a more precise definition of the individual risk. These findings have to be validated by a representative number of patients.}, language = {en} } @article{ChenShiauTsengetal.2010, author = {Chen, Jin-Long and Shiau, Yuo-Hsien and Tseng, Yin-Jiun and Chiu, Hung-Wen and Hsiao, Tzu-Chien and Wessel, Niels and Kurths, J{\"u}rgen and Chu, Woei-Chyn}, title = {Concurrent sympathetic activation and vagal withdrawal in hyperthyroidism : evidence from detrended fluctuation analysis of heart rate variability}, issn = {0378-4371}, doi = {10.1016/j.physa.2009.12.062}, year = {2010}, abstract = {Despite many previous Studies on the association between hyperthyroidism and the hyperadrenergic state, controversies still exist. Detrended fluctuation analysis (DFA) is a well recognized method in the nonlinear analysis of heart rate variability (HRV), and it has physiological significance related to the autonomic nervous system. In particular, an increased short-term scaling exponent alpha 1 calculated from DFA is associated with both increased sympathetic activity and decreased vagal activity. No study has investigated the DFA of HRV in hyperthyroidism. This study was designed to assess the sympathovagal balance in hyperthyroidism. We performed the DFA along with the linear analysis of HRV in 36 hyperthyroid Graves' disease patients (32 females and 4 males; age 30 +/- 1 years, means +/- SE) and 36 normal controls matched by sex, age and body mass index. Compared with the normal controls, the hyperthyroid patients revealed a significant increase (P < 0.001) in alpha 1 (hyperthyroid 1.28 +/- 0.04 versus control 0.91 +/- 0.02), long-term scaling exponent alpha 2 (1.05 +/- 0.02 versus 0.90 +/- 0.01), overall scaling exponent alpha (1.11 +/- 0.02 versus 0.89 +/- 0.01), low frequency power in normalized units (LF\%) and the ratio of low frequency power to high frequency power (LF/HF); and a significant decrease (P < 0.001) in the standard deviation of the R-R intervals (SDNN) and high frequency power (HF). In conclusion, hyperthyroidism is characterized by concurrent sympathetic activation and vagal withdrawal. This sympathovagal imbalance state in hyperthyroidism helps to explain the higher prevalence of atrial fibrillation and exercise intolerance among hyperthyroid patients.}, language = {en} } @article{WesselRiedlKurths2009, author = {Wessel, Niels and Riedl, Maik and Kurths, J{\"u}rgen}, title = {Is the normal heart rate "chaotic" due to respiration?}, issn = {1054-1500}, doi = {10.1063/1.3133128}, year = {2009}, abstract = {The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96\%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: " Is the normal heart rate 'chaotic' due to respiration?"}, language = {en} } @article{RetzlaffBauernschmittMalbergetal.2009, author = {Retzlaff, Beatrice and Bauernschmitt, Robert and Malberg, Hagen and Brockmann, Gernot and Uhl, Christian and Lange, Ruediger and Kurths, J{\"u}rgen and Bretthauer, Georg and Wessel, Niels}, title = {Depression of cardiovascular autonomic function is more pronounced after mitral valve surgery : evidence for direct trauma}, issn = {1364-503X}, doi = {10.1098/rsta.2008.0272}, year = {2009}, abstract = {The analysis of baroreflex sensitivity (BRS) and heart rate variability (HRV) leads to additional insights into patients' prognosis after cardiovascular events. The following study was performed to assess the differences in the post-operative recovery of autonomic regulation after mitral valve (MV) and aortic valve (AV) surgery with a heart lung machine. Among the 43 consecutive male patients enrolled in a prospective study, 26 underwent isolated AV surgery and 17 isolated MV surgery. Blood pressure as well as ECG signals were recorded the day before, 24 hours after and one week after surgery. BRS was calculated according to the dual sequence method, and HRV was calculated using standard linear as well as nonlinear parameters. There were no major differences between the two groups in the pre-operative values. At 24 hours a comparable depression of HRV and BRS in both groups was observed, while at 7 days there was partial recovery in AV patients, which was absent in MV patients: p(AV versus MV) < 0.001. While the response of the autonomic system to surgery is similar in AV and MV patients, there is obviously a decreased ability to recover in MV patients, probably attributed to traumatic lesions of the autonomic nervous system by opening the atria. Ongoing research is required for further clarification of the pathophysiology of this phenomenon and to establish strategies to restore autonomic function.}, language = {en} } @article{PortaDiRienzoWesseletal.2009, author = {Porta, Alberto and Di Rienzo, Marco and Wessel, Niels and Kurths, J{\"u}rgen}, title = {Addressing the complexity of cardiovascular regulation}, issn = {1364-503X}, doi = {10.1098/rsta.2008.0292}, year = {2009}, language = {en} } @article{WesselKleinerVossetal.1997, author = {Wessel, Niels and Kleiner, H. J. and Voss, Andreas and Kurths, J{\"u}rgen and Dietz, R.}, title = {Nonlinear dynamics in cardiovasscular diseases}, year = {1997}, language = {en} } @article{HellandGapelyukSuhrbieretal.2010, author = {Helland, Vanessa Carolina Figuera and Gapelyuk, Andrej and Suhrbier, Alexander and Riedl, Maik and Penzel, Thomas and Kurths, J{\"u}rgen and Wessel, Niels}, title = {Investigation of an automatic sleep stage classification by means of multiscorer hypnogram}, issn = {0026-1270}, doi = {10.3414/Me09-02-0052}, year = {2010}, abstract = {Objectives: Scoring sleep visually based on polysomnography is an important but time-consuming element of sleep medicine. Where-as computer software assists human experts in the assignment of sleep stages to polysomnogram epochs, their performance is usually insufficient. This study evaluates the possibility to fully automatize sleep staging considering the reliability of the sleep stages available from human expert sleep scorers. Methods: We obtain features from EEG, ECG and respiratory signals of polysomnograms from ten healthy subjects. Using the sleep stages provided by three human experts, we evaluate the performance of linear discriminant analysis on the entire polysomnogram and:only on epochs where the three experts agree in their-sleep stage scoring. Results: We show that in polysomnogram intervals, to which all three scorers assign the same sleep stage, our algorithm achieves 90\% accuracy. This high rate of agreement with the human experts is accomplished with only a small set of three frequency features from the EEG. We increase-the performance to 93\% by including ECG and respiration features. In contrast, on intervals of ambiguous sleep stage, the sleep stage classification obtained from our algorithm, agrees with the human consensus scorer in approximately 61\%. Conclusions: These findings suggest that machine classification is highly consistent with human sleep staging and that error in the algorithm's assignments is rather a problem of lack of well-defined criteria for human experts to judge certain polysomnogram epochs than an insufficiency of computational procedures}, language = {en} } @article{WesselVossKurthsetal.2000, author = {Wessel, Niels and Voss, Andreas and Kurths, J{\"u}rgen and Schirdewan, Alexander and Hnatkova, Katarina and Malik, Marek}, title = {Evaluation of renormalised entropy for risk stratification using heart rate variability data}, year = {2000}, abstract = {Standard time and frequency parameters of heart rate variability (HRV) describe only linear and periodic behaviour, whereas more complex relationships cannot be recognised. A method that may be capable of assessing more complex properties is the non-linear measure of 'renormalised entropy.' A new concept of the method, RE(AR), has been developed, based on a non-linear renormalisation of autoregressive spectral distributions. To test the hypothesis that renormalised entropy may improve the result of high-risk stratification after myocardial infarction, it is applied to a clinical pilot study (41 subjects) and to prospective data of the St George's Hospital post- infarction database (572 patients). The study shows that the new RE(AR) method is more reproducible and more stable in time than a previously introduced method (p<0.001). Moreover, the results of the study confirm the hypothesis that on average, the survivors have negative values of RE(AR) (-0.11+/-0.18), whereas the non-survivors have positive values (0.03+/-0.22, p<0.01). Further, the study shows that the combination of an HRV triangular index and RE(AR) leads to a better prediction of sudden arrhythmic death than standard measurements of HRV. In summary, the new RE(AR) method is an independent measure in HRV analysis that may be suitable for risk stratification in patients after myocardial infarction.}, language = {en} } @article{WesselZiehmannKurthsetal.2000, author = {Wessel, Niels and Ziehmann, Christine and Kurths, J{\"u}rgen and Meyerfeldt, Udo and Schirdewan, Alexander and Voss, Andreas}, title = {Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates}, year = {2000}, abstract = {Ventricular tachycardia or fibrillation (VT-VF) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this study is to find early signs of sustained VT-VF in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they store the 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study these 1000 beat-to-beat intervals of 17 chronic heart failure ICD patients before the onset of a life-threatening arrhythmia and at a control time, i.e., without a VT-VF event. To characterize these rather short data sets, we calculate heart rate variability parameters from the time and frequency domain, from symbolic dynamics as well as the finite-time growth rates. We find that neither the time nor the frequency domain parameters show significant differences between the VT-VF and the control time series. However, two parameters from symbolic dynamics as well as the finite-time growth rates discriminate significantly both groups. These findings could be of importance in algorithms for next generation ICD's to improve the diagnostics and therapy of VT-VF.}, language = {en} } @article{WesselSchumannWesseletal.2000, author = {Wessel, Niels and Schumann, Agnes and Wessel, Niels and Schumann, Agnes and Schirdewan, Alexander and Voss, Andreas and Kurths, J{\"u}rgen}, title = {Entropy measures in heart rate variability data}, year = {2000}, language = {en} } @article{WesselVossMalbergetal.2000, author = {Wessel, Niels and Voss, Andreas and Malberg, Hagen and Ziehmann, Christine and Voss, Henning U. and Schirdewan, Alexander and Meyerfeldt, Udo and Kurths, J{\"u}rgen}, title = {Nonlinear analysis of complex phenomena in cardiological data}, year = {2000}, abstract = {The main intention of this contribution is to discuss different nonlinear approaches to heart rate and blood pressure variability analysis for a better understanding of the cardiovascular regulation. We investigate measures of complexity which are based on symbolic dynamics, renormalised entropy and the finite time growth rates. The dual sequence method to estimate the baroreflex sensitivity and the maximal correlation method to estimate the nonlinear coupling between time series are employed for analysing bivariate data. The latter appears to be a suitable method to estimate the strength of the nonlinear coupling and the coupling direction. Heart rate and blood pressure data from clinical pilot studies and from very large clinical studies are analysed. We demonstrate that parameters from nonlinear dynamics are useful for risk stratification after myocardial infarction, for the prediction of life-threatening cardiac events even in short time series, and for modelling the relationship between heart rate and blood pressure regulation. These findings could be of importance for clinical diagnostics, in algorithms for risk stratification, and for therapeutic and preventive tools of next generation implantable cardioverter defibrillators.}, language = {en} } @article{BittmannGutschowLutheretal.2005, author = {Bittmann, Frank and Gutschow, Stephan and Luther, Sven and Wessel, Niels and Kurths, J{\"u}rgen}, title = {On the functional relationship between postural motor balance and performance at school}, year = {2005}, abstract = {In integrated medical considerations of the biological human system, both intellectual and motor performances in a similar manner are considered as a result of the function of the nervous system. Consequently, universal minimal dysfunctions of the central nervous system may lead to both intellectual and physical anomalies. Therefore, this study tests the hypothesis that there is a connection between the balance ability as a motor parameter and school success as an intellectual parameter. A postural measuring system based on the force-moment sensor technique was used to record the postural balance regulation of 773 children (circle divide 11 +/- 1 years). The school achievement of each child was determined by school grades. Data analysis was performed by linear as well as by nonlinear time series analyses. There are highly significant differences in balance regulation between good and poor pupils recognized by several linear and nonlinear parameters. Good pupils could be discriminated from pupils with bad results in learning to 80 \%. The results support the hypothesis mentioned above. One possible explanation for the poor regulation of balance in bad learners could be a deficit in the neural maturity. In future, further developments will be targeted on higher discrimination levels, possibly in order to predict school success. On the other hand, the effects of special movement exercises on the neural development in childhood will be the focus in our further work}, language = {en} } @article{RiedlvanLeeuwenSuhrbieretal.2009, author = {Riedl, Maik and van Leeuwen, Peter Jan and Suhrbier, Alexander and Malberg, Hagen and Groenemeyer, Dietrich and Kurths, J{\"u}rgen and Wessel, Niels}, title = {Testing foetal-maternal heart rate synchronization via model-based analyses}, issn = {1364-503X}, doi = {10.1098/rsta.2008.0277}, year = {2009}, abstract = {The investigation of foetal reaction to internal and external conditions and stimuli is an important tool in the characterization of the developing neural integration of the foetus. An interesting example of this is the study of the interrelationship between the foetal and the maternal heart rate. Recent studies have shown a certain likelihood of occasional heart rate synchronization between mother and foetus. In the case of respiratory-induced heart rate changes, the comparison with maternal surrogates suggests that the evidence for detected synchronization is largely statistical and does not result from physiological interaction. Rather, they simply reflect a stochastic, temporary stability of two independent oscillators with time-variant frequencies. We reanalysed three datasets from that study for a more local consideration. Epochs of assumed synchronization associated with short-term regulation of the foetal heart rate were selected and compared with synchronization resulting from white noise instead of the foetal signal. Using data-driven modelling analysis, it was possible to identify the consistent influence of the heartbeat duration of maternal beats preceding the foetal beats during epochs of synchronization. These maternal beats occurred approximately one maternal respiratory cycle prior to the affected foetal beat. A similar effect could not be found in the epochs without synchronization. Simulations based on the fitted models led to a higher likelihood of synchronization in the data segments with assumed foetal-maternal interaction than in the segment without such assumed interaction. We conclude that the data-driven model-based analysis can be a useful tool for the identification of synchronization.}, language = {en} } @article{WesselMarwanMeyerfeldtetal.2001, author = {Wessel, Niels and Marwan, Norbert and Meyerfeldt, Udo and Schirdewan, Alexander and Kurths, J{\"u}rgen}, title = {Recurrence quantification analysis to characterise the heart rate variability before the onset of ventricular tachycardia}, year = {2001}, abstract = {Ventricular tachycardia or fibrillation (VT) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this recurrence quantification analysis approach is to find early signs of sustained VT in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they are able to store at least 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study the}, language = {en} } @article{MarwanWesselMeyerfeldtetal.2002, author = {Marwan, Norbert and Wessel, Niels and Meyerfeldt, Udo and Schirdewan, Alexander and Kurths, J{\"u}rgen}, title = {Recurrence-plot-based measures of complexity and its application to heart-rate-variability data}, year = {2002}, abstract = {The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.}, language = {en} }