@article{AgarwalMaheswaranMarwanetal.2018, author = {Agarwal, Ankit and Maheswaran, Rathinasamy and Marwan, Norbert and Caesar, Levke and Kurths, J{\"u}rgen}, title = {Wavelet-based multiscale similarity measure for complex networks}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {91}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {11}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2018-90460-6}, pages = {12}, year = {2018}, abstract = {In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson's correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson's correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales.}, language = {en} } @article{KurthsAgarwalShuklaetal.2019, author = {Kurths, J{\"u}rgen and Agarwal, Ankit and Shukla, Roopam and Marwan, Norbert and Maheswaran, Rathinasamy and Caesar, Levke and Krishnan, Raghavan and Merz, Bruno}, title = {Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach}, series = {Nonlinear processes in geophysics}, volume = {26}, journal = {Nonlinear processes in geophysics}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-26-251-2019}, pages = {251 -- 266}, year = {2019}, abstract = {A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Ni{\~n}o-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.}, language = {en} }