@article{ZhouZemanovaZamoraetal.2006, author = {Zhou, Changsong and Zemanova, Lucia and Zamora, Gorka and Hilgetag, Claus C. and Kurths, J{\"u}rgen}, title = {Hierarchical organization unveiled by functional connectivity in complex brain networks}, series = {Physical review letters}, volume = {97}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.97.238103}, pages = {4}, year = {2006}, abstract = {How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.}, language = {en} } @article{ZhouMotterKurths2006, author = {Zhou, Changsong and Motter, Adilson E. and Kurths, J{\"u}rgen}, title = {Universality in the synchronization of weighted random networks}, doi = {10.1103/Physrevlett.96.034101}, year = {2006}, abstract = {Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters}, language = {en} } @article{ZhouKurthsKissetal.2002, author = {Zhou, Changsong and Kurths, J{\"u}rgen and Kiss, Istvan Z. and Hudson, J. L.}, title = {Noise-enhanced phase synchronization of chaotic oscillators}, year = {2002}, language = {en} } @article{ZhouKurthsHu2001, author = {Zhou, Changsong and Kurths, J{\"u}rgen and Hu, B.}, title = {Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise}, year = {2001}, language = {en} } @article{ZhouKurths2005, author = {Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Noise-sustained and controlled synchronization of stirred excitable media by external forcing}, issn = {1367-2630}, year = {2005}, abstract = {Most of the previous studies on constructive effects of noise in spatially extended systems have focused on static media, e.g., of the reaction diffusion type. Because many active chemical or biological processes occur in a fluid environment with mixing, we investigate here the interplay among noise, excitability, mixing and external forcing in excitable media advected by a chaotic flow, in a two-dimensional FitzHugh-Nagumo model described by a set of reaction- advection-diffusion equations. In the absence of external forcing, noise may generate sustained coherent oscillations of the media in a range of noise intensities and stirring rates. We find that these noise-sustained oscillations can be synchronized by external periodic signals much smaller than the threshold. Analysis of the locking regions in the parameter space of the signal period, stirring rate and noise intensity reveals that the mechanism underlying the synchronization behaviour is a matching between the time scales of the forcing signal and the noise-sustained oscillations. The results demonstrate that, in the presence of a suitable level of noise, the stirred excitable media act as self-sustained oscillatory systems and become much easier to be entrained by weak external forcing. Our results may be verified in experiments and are useful to understand the synchronization of population dynamics of oceanic ecological systems by annual cycles}, language = {en} } @article{ZhouKurths2004, author = {Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Resonant patterns in noisy active media}, issn = {1063-651X}, year = {2004}, abstract = {We investigate noise-controlled resonant response of active media to weak periodic forcing, both in excitable and oscillatory regimes. In the excitable regime, we find that noise-induced irregular wave structures can be reorganized into frequency-locked resonant patterns by weak signals with suitable frequencies. The resonance occurs due to a matching condition between the signal frequency and the noise-induced inherent time scale of the media. m:1 resonant regions similar to the Arnold tongues in frequency locking of self-sustained oscillatory media are observed. In the self-sustained oscillatory regime, noise also controls the oscillation frequency and reshapes significantly the Arnold tongues. The combination of noise and weak signal thus could provide an efficient tool to manipulate active extended systems in experiments}, language = {en} } @article{ZhouKurths2006, author = {Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Dynamical weights and enhanced synchronization in adaptive complex networks}, doi = {10.1103/Physrevlett.96.164102}, year = {2006}, abstract = {Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks}, language = {en} } @article{ZhouKurths2006, author = {Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Hierarchical synchronization in complex networks with heterogeneous degrees}, issn = {1054-1500}, doi = {10.1063/1.2150381}, year = {2006}, abstract = {We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function. (C) 2006 American Institute of Physics}, language = {en} } @article{ZhouKurths2002, author = {Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Noise-induced phase synchronization and synchronization transitions in chaotic oscillators}, year = {2002}, language = {en} } @article{ZemanovaZhouKurths2006, author = {Zemanova, Lucia and Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Structural and functional clusters of complex brain networks}, series = {Physica, D, Nonlinear phenomena}, volume = {224}, journal = {Physica, D, Nonlinear phenomena}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2006.09.008}, pages = {202 -- 212}, year = {2006}, abstract = {Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.}, language = {en} }