@article{WesselRiedlKurths2009, author = {Wessel, Niels and Riedl, Maik and Kurths, J{\"u}rgen}, title = {Is the normal heart rate "chaotic" due to respiration?}, issn = {1054-1500}, doi = {10.1063/1.3133128}, year = {2009}, abstract = {The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96\%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: " Is the normal heart rate 'chaotic' due to respiration?"}, language = {en} } @article{RetzlaffBauernschmittMalbergetal.2009, author = {Retzlaff, Beatrice and Bauernschmitt, Robert and Malberg, Hagen and Brockmann, Gernot and Uhl, Christian and Lange, Ruediger and Kurths, J{\"u}rgen and Bretthauer, Georg and Wessel, Niels}, title = {Depression of cardiovascular autonomic function is more pronounced after mitral valve surgery : evidence for direct trauma}, issn = {1364-503X}, doi = {10.1098/rsta.2008.0272}, year = {2009}, abstract = {The analysis of baroreflex sensitivity (BRS) and heart rate variability (HRV) leads to additional insights into patients' prognosis after cardiovascular events. The following study was performed to assess the differences in the post-operative recovery of autonomic regulation after mitral valve (MV) and aortic valve (AV) surgery with a heart lung machine. Among the 43 consecutive male patients enrolled in a prospective study, 26 underwent isolated AV surgery and 17 isolated MV surgery. Blood pressure as well as ECG signals were recorded the day before, 24 hours after and one week after surgery. BRS was calculated according to the dual sequence method, and HRV was calculated using standard linear as well as nonlinear parameters. There were no major differences between the two groups in the pre-operative values. At 24 hours a comparable depression of HRV and BRS in both groups was observed, while at 7 days there was partial recovery in AV patients, which was absent in MV patients: p(AV versus MV) < 0.001. While the response of the autonomic system to surgery is similar in AV and MV patients, there is obviously a decreased ability to recover in MV patients, probably attributed to traumatic lesions of the autonomic nervous system by opening the atria. Ongoing research is required for further clarification of the pathophysiology of this phenomenon and to establish strategies to restore autonomic function.}, language = {en} } @article{PortaDiRienzoWesseletal.2009, author = {Porta, Alberto and Di Rienzo, Marco and Wessel, Niels and Kurths, J{\"u}rgen}, title = {Addressing the complexity of cardiovascular regulation}, issn = {1364-503X}, doi = {10.1098/rsta.2008.0292}, year = {2009}, language = {en} } @article{RiedlvanLeeuwenSuhrbieretal.2009, author = {Riedl, Maik and van Leeuwen, Peter Jan and Suhrbier, Alexander and Malberg, Hagen and Groenemeyer, Dietrich and Kurths, J{\"u}rgen and Wessel, Niels}, title = {Testing foetal-maternal heart rate synchronization via model-based analyses}, issn = {1364-503X}, doi = {10.1098/rsta.2008.0277}, year = {2009}, abstract = {The investigation of foetal reaction to internal and external conditions and stimuli is an important tool in the characterization of the developing neural integration of the foetus. An interesting example of this is the study of the interrelationship between the foetal and the maternal heart rate. Recent studies have shown a certain likelihood of occasional heart rate synchronization between mother and foetus. In the case of respiratory-induced heart rate changes, the comparison with maternal surrogates suggests that the evidence for detected synchronization is largely statistical and does not result from physiological interaction. Rather, they simply reflect a stochastic, temporary stability of two independent oscillators with time-variant frequencies. We reanalysed three datasets from that study for a more local consideration. Epochs of assumed synchronization associated with short-term regulation of the foetal heart rate were selected and compared with synchronization resulting from white noise instead of the foetal signal. Using data-driven modelling analysis, it was possible to identify the consistent influence of the heartbeat duration of maternal beats preceding the foetal beats during epochs of synchronization. These maternal beats occurred approximately one maternal respiratory cycle prior to the affected foetal beat. A similar effect could not be found in the epochs without synchronization. Simulations based on the fitted models led to a higher likelihood of synchronization in the data segments with assumed foetal-maternal interaction than in the segment without such assumed interaction. We conclude that the data-driven model-based analysis can be a useful tool for the identification of synchronization.}, language = {en} }