@article{ShuklaAgarwalSachdevaetal.2018, author = {Shukla, Roopam and Agarwal, Ankit and Sachdeva, Kamna and Kurths, J{\"u}rgen and Joshi, P. K.}, title = {Climate change perception}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {152}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-018-2314-z}, pages = {103 -- 119}, year = {2018}, abstract = {Climate change and variability have created widespread risks for farmers' food and livelihood security in the Himalayas. However, the extent of impacts experienced and perceived by farmers varies, as there is substantial diversity in the demographic, social, and economic conditions. Therefore, it is essential to understand how farmers with different resource-endowment and household characteristics perceive climatic risks. This study aims to analyze how farmer types perceive climate change processes and its impacts to gain insight into locally differentiated concerns by farming communities. The present study is based in the Uttarakhand state of Indian Western Himalayas. We examine farmer perceptions of climate change and how perceived impacts differ across farmer types. Primary household interviews with farming households (nā€‰=ā€‰241) were done in Chakrata and Bhikiyasian tehsil in Uttarakhand, India. In addition, annual and seasonal patterns of historical data of temperature (1951-2013) and precipitation (1901-2013) were analyzed to estimate trends and validate farmers' perception. Using statistical methods farmer typology was constructed, and five unique farmer types are identified. Majority of respondents across all farmer types noticed a decrease in summer and winter precipitation and an increase in summer temperature. Whereas the perceptions of impacts of climate change diverged across farmer types, as specific farmer types exclusively experienced few impacts. Impact of climatic risks on household food security and income was significantly perceived stronger by low-resource-endowed subsistence farmers, whereas the landless farmer type exclusively felt impacts on the communities social bond. This deeper understanding of the differentiated perception of impacts has strong implications for agricultural and development policymaking, highlighting the need for providing flexible adaptation options rather than specific solutions to avoid inequalities in fulfilling the needs of the heterogeneous farming communities.}, language = {en} } @article{MaheswaranAgarwalSivakumaretal.2019, author = {Maheswaran, Rathinasamy and Agarwal, Ankit and Sivakumar, Bellie and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Wavelet analysis of precipitation extremes over India and teleconnections to climate indices}, series = {Stochastic Environmental Research and Risk Assessment}, volume = {33}, journal = {Stochastic Environmental Research and Risk Assessment}, number = {11-12}, publisher = {Springer}, address = {New York}, issn = {1436-3240}, doi = {10.1007/s00477-019-01738-3}, pages = {2053 -- 2069}, year = {2019}, abstract = {Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region.}, language = {en} } @article{KurthsAgarwalShuklaetal.2019, author = {Kurths, J{\"u}rgen and Agarwal, Ankit and Shukla, Roopam and Marwan, Norbert and Maheswaran, Rathinasamy and Caesar, Levke and Krishnan, Raghavan and Merz, Bruno}, title = {Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach}, series = {Nonlinear processes in geophysics}, volume = {26}, journal = {Nonlinear processes in geophysics}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-26-251-2019}, pages = {251 -- 266}, year = {2019}, abstract = {A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Ni{\~n}o-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {951}, issn = {1866-8372}, doi = {10.25932/publishup-47100}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471006}, pages = {19}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {5}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-2235-2020}, pages = {2235 -- 2251}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2017, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Multi-scale event synchronization analysis for unravelling climate processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {661}, issn = {1866-8372}, doi = {10.25932/publishup-41827}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418274}, pages = {13}, year = {2017}, abstract = {The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2017, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach}, series = {Nonlinear processes in geophysics}, volume = {24}, journal = {Nonlinear processes in geophysics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-24-599-2017}, pages = {599 -- 611}, year = {2017}, abstract = {The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2018, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Quantifying the roles of single stations within homogeneous regions using complex network analysis}, series = {Journal of hydrology}, volume = {563}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2018.06.050}, pages = {802 -- 810}, year = {2018}, abstract = {Regionalization and pooling stations to form homogeneous regions or communities are essential for reliable parameter transfer, prediction in ungauged basins, and estimation of missing information. Over the years, several clustering methods have been proposed for regional analysis. Most of these methods are able to quantify the study region in terms of homogeneity but fail to provide microscopic information about the interaction between communities, as well as about each station within the communities. We propose a complex network-based approach to extract this valuable information and demonstrate the potential of our approach using a rainfall network constructed from the Indian gridded daily precipitation data. The communities were identified using the network-theoretical community detection algorithm for maximizing the modularity. Further, the grid points (nodes) were classified into universal roles according to their pattern of within- and between-community connections. The method thus yields zoomed-in details of individual rainfall grids within each community.}, language = {en} } @article{AgarwalMaheswaranMarwanetal.2018, author = {Agarwal, Ankit and Maheswaran, Rathinasamy and Marwan, Norbert and Caesar, Levke and Kurths, J{\"u}rgen}, title = {Wavelet-based multiscale similarity measure for complex networks}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {91}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {11}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2018-90460-6}, pages = {12}, year = {2018}, abstract = {In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson's correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson's correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales.}, language = {en} } @article{AgarwalMaheswaranKurthsetal.2016, author = {Agarwal, Ankit and Maheswaran, Rathinasamy and Kurths, J{\"u}rgen and Khosa, R.}, title = {Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States}, series = {Water Resources Management}, volume = {30}, journal = {Water Resources Management}, publisher = {Springer}, address = {Dordrecht}, issn = {0920-4741}, doi = {10.1007/s11269-016-1428-1}, pages = {4399 -- 4413}, year = {2016}, abstract = {Hydrologic regionalization deals with the investigation of homogeneity in watersheds and provides a classification of watersheds for regional analysis. The classification thus obtained can be used as a basis for mapping data from gauged to ungauged sites and can improve extreme event prediction. This paper proposes a wavelet power spectrum (WPS) coupled with the self-organizing map method for clustering hydrologic catchments. The application of this technique is implemented for gauged catchments. As a test case study, monthly streamflow records observed at 117 selected catchments throughout the western United States from 1951 through 2002. Further, based on WPS of each station, catchments are classified into homogeneous clusters, which provides a representative WPS pattern for the streamflow stations in each cluster.}, language = {en} }