@book{AleAghaBoyleBraunetal.2008, author = {Ale-Agha, Nosratollah and Boyle, H. and Braun, Uwe and Butin, H. and Jage, Horst and Kummer, Volker and Shin, H.}, title = {Taxonomy, host range and distribution of some powdery mildew fungi (Erysiphales)}, year = {2008}, abstract = {Oidium pedaliacearum sp. nov. (; O. sesami, nom. inval.) and Podosphaera macrospora comb. et stat. nov. (; Sphaerotheca alpina f. macrospora) are introduced, and the taxonomy and distribution of Erysiphe celosiae is discussed. New host species and new collections of Erysiphe cruciferarum (on Cleome hassleriana), E. flexuosa (on Aesculus hippocastanum), E. hedwigii (on Viburnum carlesii), E. heraclei (on Tinguarra montana), E. cf. macleayae (on Macleaya cordata), E. prunastri (on Prunus cerasifera), E. sedi (on Sedum aff. spectabilis), E. trifolii (on Trigonella caerulea), Golovinomyces cichoracearum (on Argyranthemum pinnatifidum subsp. succulentum), G. cf. hydrophyllacearum (on Nemophila menziesii), G. orontii (on Nolana spp.), G. cf. orontii (on Tiarella cordifolia), Neoerysiphe cumminsiana (on Bidens cf. ferulifolia), Oidium clitoriae (on Clitoria ternatea), O. cf. hortensiae (on Philadelphus coronarius), O. pedilanthi (on Pedilanthus tithymaloides), Oidium (Pseudoidium) sp. (on Utricularia alpina), Podosphaera sp. (on Bergia capensis), Sawadaea bicornis (on Acer platanoides) and S. tulasnei (on Acer ginnala and A. tatarica) are recorded from France, Germany, Greece and Mexico.}, language = {en} } @article{BraunKummerXu2009, author = {Braun, Uwe and Kummer, Volker and Xu, B.}, title = {Taxonomy and nomenclature of powdery mildew fungi : erysiphe asclepiadis, E. robiniicola and Golovinomyces caulicola}, year = {2009}, abstract = {The new species Erysiphe asclepiadis is described, illustrated and discussed. A new Chinese collection of Erysiphe robiniicola has recently been found that can be used to elucidate and discuss the confused taxonomy and nomenclature of this species and other taxa of Erysiphe s. lat. on Robinia spp. Based on a re-examination of type material in connection with the data given in the protologue, it can be shown that Capnodium lygodesmiae must be reduced to synonymy with Ampelomyces quisqualis. The confusion surrounding the name C. lygodesmiae, caused by the occurrence of the hyperparasite A. quisqualis on a powdery mildew fungus with abundant chasmothecia, is discussed in detail. The new combination, Golovinomyces caulicola (; Spolverinia caulicola), is proposed for the powdery mildew that serves as host of C. lygodesmiae.}, language = {en} } @article{BubnerBuchheitFriedrichetal.2019, author = {Bubner, Ben and Buchheit, Ramona and Friedrich, Frank and Kummer, Volker and Scholler, Markus}, title = {Species identification of European forest pathogens of the genus Milesina (Pucciniales) using urediniospore morphology and molecular barcoding including M. woodwardiana sp. nov.}, series = {MycoKeys}, journal = {MycoKeys}, number = {48}, publisher = {Pensoft Publishers}, address = {Sofia}, issn = {1314-4057}, doi = {10.3897/mycokeys.48.30350}, pages = {1 -- 40}, year = {2019}, abstract = {Species of rust fungi of the genus Milesina (Pucciiastraceae, Pucciniales) are distributed mainly in northern temperate regions. They host-alternate between needles of fir (Abies spp.) and fronds of ferns (species of Polypodiales). Milesina species are distinguished based on host taxonomy and urediniospore morphology. In this study, 12 species of Milesina from Europe were revised. Specimens were examined by light and scanning electron microscopy for urediniospore morphology with a focus on visualising germ pores (number, size and position) and echinulation. In addition, barcode loci (ITS, nad6, 28S) were used for species delimitation and for molecular phylogenetic analyses. Barcodes of 72 Milesina specimens were provided, including 11 of the 12 species. Whereas urediniospore morphology features were sufficient to distinguish all 12 Milesina species except for 2 (M. blechni and M. kriegeriana), ITS sequences separated only 4 of 11 species. Sequencing with 28S and nad6 did not improve species resolution. Phylogenetic analysis, however, revealed four phylogenetic groups within Milesina that also correlate with specific urediniospore characters (germ pore number and position and echinulation). These groups are proposed as new sections within Milesina (sections Milesina, Vogesiacae M. Scholler \& Bubner, sect. nov., Scolopendriorum M. Scholler \& Bubner, sect. nov. and Carpaticae M. Scholler \& Bubner, sect. nov.). In addition, Milesina woodwardiana Buchheit \& M. Scholler, sp. nov. on Woodwardia radicans, a member of the type section Milesina, is newly described. An identification key for European Milesina species, based on urediniospore features, is provided.}, language = {en} } @article{KummerBurkart1995, author = {Kummer, Volker and Burkart, Michael}, title = {Scolochloa festucacea (WILLD.) LINK in der Unteren Havelniederung Sachsen-Anhalts}, year = {1995}, language = {de} } @article{BaralRoenschRichteretal.2022, author = {Baral, Hans Otto and R{\"o}nsch, Peter and Richter, Udo and Urban, Alexander and Kruse, Julia and Bemmann, Martin and Kummer, Volker and Javier Valencia, Francisco and Huth, Wolfgang}, title = {Schroeteria decaisneana, S. poeltii, and Ciboria ploettneriana (Sclerotiniaceae, Helotiales, Ascomycota), three parasites on Veronica seeds}, series = {Mycological progress : international journal of the German Mycological Society}, volume = {21}, journal = {Mycological progress : international journal of the German Mycological Society}, number = {1}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1617-416X}, doi = {10.1007/s11557-021-01742-4}, pages = {359 -- 407}, year = {2022}, abstract = {Ciboria ploettneriana, Schroeteria decaisneana, and S. poeltii produce morphologically very similar apothecia emerging from fallen stromatized seeds of Veronica spp., the former two on V. hederifolia agg. in temperate central Europe and S. poeltii on V. cymbalaria in mediterranean southern Europe. They are described and illustrated in detail based on fresh collections or moist chamber cultures of infected seeds. A key is provided to differentiate the three species from their teleomorphs. For the first time, connections between two teleomorphs and two Schroeteria anamorphs are reported. Members of the anamorph-typified genus Schroeteria are known as host-specific plant parasites that infect seeds of different Veronica spp. In earlier times, they were classified in the Ustilaginales (Basidiomycota), but since more than 30 years, they are referred to as false smut fungi producing smut-like chlamydospores, based on light microscopic and ultrastructural studies which referred them to the Sclerotiniaceae (Helotiales). During the present study, rDNA sequences were obtained for the first time from chlamydospores of Schroeteria bornmuelleri (on V. rubrifolia), S. decaisneana (on V. hederifolia), S. delastrina (generic type, on V. arvensis), and S. poeltii (on V. cymbalaria) and from apothecia of C. ploettneriana, S. decaisneana, and S. poeltii. As a result, the anamorph-teleomorph connection could be established for S. decaisneana and S. poeltii by a 100\% ITS similarity, whereas C. ploettneriana could not be connected to a smut-like anamorph. Ciboria ploettneriana in the here-redefined sense clustered in our combined phylogenetic analyses of ITS and LSU in relationship of Sclerotinia s.l., Botrytis, and Myriosclerotinia rather than Ciboria, but its placement was not supported. Its affiliation in Ciboria was retained until a better solution is found. Also Schroeteria poeltii clustered unresolved in this relationship but with a much higher molecular distance. The remaining three Schroeteria spp. formed a strongly supported monophyletic group, here referred to as "Schroeteria core clade", which clustered with medium to high support as a sister clade of Monilinia jezoensis, a member of the Monilinia alpina group of section Disjunctoriae. We observed ITS distances of 5-6.3\% among members of the Schroeteria core clade, but 13.8-14.7\% between this clade and S. poeltii, which appears to be correlated with the deviating chlamydospore morphology of S. poeltii. Despite its apparent paraphyly, Schroeteria is accepted here in a wide sense as a genus distinct from Monilinia, particularly because of its very special anamorphs. A comparable heterogeneity in rDNA analyses was observed in Monilinia and other genera of Sclerotiniaceae. Such apparent heterogeneity should be met with skepticism, however, because the inclusion of protein-coding genes in phylogenetic analyses resulted in a monophyletic genus Monilinia. More sclerotiniaceous taxa should be analysed for protein-coding genes in the future, including Schroeteria. Four syntype specimens of Ciboria ploettneriana in B were reexamined in the present study, revealing a mixture of the two species growing on V. hederifolia agg. Based on its larger ascospores in comparison with S. decaisneana, a lectotype is proposed for C. ploettneriana.}, language = {en} } @article{Kummer2002, author = {Kummer, Volker}, title = {Rutstroemia fruticeti und Velutarina rufoolivacea : zwei wenig beachtete Besiedler abgestorbener Rubus fruticosus-Ruten}, issn = {0014-8962}, year = {2002}, language = {de} } @article{GoergPlochKruseetal.2017, author = {Goerg, Marlena and Ploch, Sebastian and Kruse, Julia and Kummer, Volker and Runge, Fabian and Choi, Young-Joon and Thines, Marco}, title = {Revision of Plasmopara (Oomycota, Peronosporales) parasitic to Impatiens}, series = {Mycological progress : international journal of the German Mycological Society}, volume = {16}, journal = {Mycological progress : international journal of the German Mycological Society}, publisher = {Springer}, address = {Heidelberg}, issn = {1617-416X}, doi = {10.1007/s11557-017-1316-y}, pages = {791 -- 799}, year = {2017}, abstract = {The oomycete Plasmopara obducens was first described on wild Impatiens noli-tangere in Germany in 1877. About 125 years later the first occurrence of P. obducens on cultivated I. walleriana in the United Kingdom was reported, and a worldwide epidemic followed. Although this pathogen is a major threat for ornamental busy lizzy, the identity of the pathogen remained unconfirmed and the high host specificity observed for the genus Plasmopara cast doubts regarding its determination as P. obducens. In this study, using multigene phylogenies and morphological investigation, it is revealed that P. obducens on I. noli-tangere is not the conspecific with the pathogen affecting I. walleriana and another ornamental balsam, I. balsamina. As a consequence, the new names P. destructor and P. velutina are introduced for the pathogens of I. walleriana and I. balsamina, respectively.}, language = {en} } @article{RottstockKummerFischeretal.2017, author = {Rottstock, Tanja and Kummer, Volker and Fischer, Markus and Joshi, Jasmin Radha}, title = {Rapid transgenerational effects in Knautia arvensis in response to plant community diversity}, series = {The journal of ecology}, volume = {105}, journal = {The journal of ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.12689}, pages = {714 -- 725}, year = {2017}, abstract = {1. Plant species persistence in natural communities requires coping with biotic and abiotic challenges. These challenges also depend on plant community composition and diversity. Over time, biodiversity effects have been shown to be strengthened via increasing species complementarity in mixtures. Little is known, however, whether differences in community diversity and composition induce rapid transgenerational phenotypic adaptive differentiation during community assembly. We expect altered plant-plant and other biotic interactions (mutualists or antagonists) in high vs. low diverse communities to affect immediate within-and between-species trait differentiations due to competition for light and nutrients. 2. Three years after the initiation of a large-scale, long-term biodiversity experiment in Jena, Germany, we tested for effects of varying experimental plant community diversity (1-60 plant species; one to four plant functional groups) and composition (with or without legumes and/or grasses) on phenotypic differentiation and variation of the tall herb Knautia arvensis. We measured reproduction at different diversity levels in the Jena Experiment (residents hereafter) and, in an additional common garden experiment without competition, recorded subsequent offspring performance (i.e. growth, reproductive success and susceptibility to powdery mildew) to test for differentiation in phenotypic expression and variability. 3. We observed phenotypic differences among diversity levels with reduced fecundity of K. arvensis residents in more diverse communities. In the next generation grown under common garden conditions, offspring from high-diversity plots showed reduced growth (i.e. height) and lower reproduction (i.e. fewer infructescences), but increased phenotypic trait variability (e.g. in leaf width and powdery mildew presence) and also tended to be less susceptible to powdery mildew infection. 4. Community composition also affected Knautia parents and offspring. In the presence of legumes, resident plants produced more seeds (increased fecundity); however, germination rate of those seeds was reduced at an early seedling stage (reduced fertility). 5. Synthesis. We conclude that rapid transgenerational effects of community diversity and composition on both mean and variation of phenotypic traits among offspring exist. In addition to heritable variation, environmentally induced epigenetic and/or maternal processes matter for early plant community assembly and may also determine future species coexistence and community stability.}, language = {en} } @book{BraunJageKummeretal.2008, author = {Braun, Uwe and Jage, Horst and Kummer, Volker and Zimmermann, Holger}, title = {Podosphaera cf. pruinosa on Rhus hirta in Germany}, year = {2008}, abstract = {The introduction of a new powdery mildew disease on Rhus hirta in various parts of Germany (Brandenburg, Rhine- Westphalia, Sachsen-Anhalt and Saxony) is reported. The anamorph found on this host agrees well with the North American Podosphaera pruinosa. Although the teleomorph has not yet been found in Germany and a molecular study has not yet been possible due to the lack of fresh North American material for a comparison, there is little doubt that the European outbreak of the Rhus powdery mildew disease may be referred to as Podosphaera pruinosa. Morphology, taxonomy and distribution of Podosphaera species on Rhus and other hosts of the Anacardiaceae are discussed in detail.}, language = {en} } @article{KummerHaneltHaneltetal.2010, author = {Kummer, Volker and Hanelt, Dorothea and Hanelt, Peter and Jage, Horst and John, Heino and Richter, Heidrun and Richter, Udo and Schultz, Burkhard}, title = {Phyllactinia hippopha{\"e}s (Erysiphales) rediscovered in Germany}, issn = {1641-8180}, year = {2010}, abstract = {The Erysiphales species Phyllactinia hippopha{\"e}s Thuem. ex S. Blumer was found for the fi rst time on cultivated Sea Buckthorn (Hippopha{\"e} rhamnoides L.) near Großkayna (Saxony-Anhalt) in October 2009. This fungus was considered to be extinct in Germany. Intensive searching in Saxony-Anhalt and the Potsdam area (Brandenburg) yielded many additional records, most of them from former brown coal mining areas or in Sea Buckthorn plantations.}, language = {en} }