@article{TurriniKroepflJensenetal.2018, author = {Turrini, Nikolaus G. and Kroepfl, Nina and Jensen, Kenneth Bendix and Reiter, Tamara C. and Francesconi, Kevin A. and Schwerdtle, Tanja and Kroutil, Wolfgang and Kuehnelt, Doris}, title = {Biosynthesis and isolation of selenoneine from genetically modified fission yeast}, series = {Metallomics : integrated biometal science}, volume = {10}, journal = {Metallomics : integrated biometal science}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c8mt00200b}, pages = {1532 -- 1538}, year = {2018}, abstract = {Selenoneine, a naturally occurring form of selenium, is the selenium analogue of ergothioneine, a sulfur species with health relevance not only as a purported antioxidant but likely also beyond. Selenoneine has been speculated to exhibit similar effects. To study selenoneine's health properties as well as its metabolic transformation, the pure compound is required. Chemical synthesis of selenoneine, however, is challenging and biosynthetic approaches have been sought. We herein report the biosynthesis and isolation of selenoneine from genetically modified fission yeast Schizosaccharomyces pombe grown in a medium containing sodium selenate. After cell lysis and extraction with methanol, selenoneine was purified by three consecutive preparative reversed-phase HPLC steps. The product obtained at the mg level was characterised by high resolution mass spectrometry, NMR and HPLC/ICPMS. Biosynthesis was found to be a promising alternative to chemical synthesis, and should be suitable for upscaling to produce higher amounts of this important selenium species in the future.}, language = {en} } @article{KroepflMarschallFrancesconietal.2017, author = {Kr{\"o}pfl, Nina and Marschall, Talke A. and Francesconi, Kevin A. and Schwerdtle, Tanja and Kuehnelt, Doris}, title = {Quantitative determination of the sulfur-containing antioxidant ergothioneine by HPLC/ICP- QQQ-MS}, series = {Journal of Analytical Atomic Spectrometry}, volume = {32}, journal = {Journal of Analytical Atomic Spectrometry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0267-9477}, doi = {10.1039/c7ja00030h}, pages = {1571 -- 1581}, year = {2017}, abstract = {Interest in the sulfur-containing antioxidant ergothioneine calls for reliable analytical methods for its quantification. In this work, a method based on reversed-phase high performance liquid chromatography (RP-HPLC) coupled with elemental mass spectrometry detection in mass shift mode (inductively coupled plasma triple quadrupole mass spectrometry, ICP-QQQ-MS) using oxygen as the reaction gas was developed for the element-selective determination of ergothioneine in complex biological matrices. Application of an instrumental setup using a 6-port-valve and the introduction of a methanol gradient allowed the time-efficient analysis of samples containing strongly retained sulfur species besides ergothioneine without compromising ICPMS detection. In aqueous solution, limits of detection and quantification (LOD and LOQ) of the optimized method for m/z 32 -> 48 (SO+) were 0.23 mu g S per L and 0.80 mu g S per L, respectively; measurements in a complex matrix (human hepatocyte carcinoma cells, HepG2) resulted in an LOD of 0.6 mu g S per L and an LOQ of 2.3 mu g S per L. Recoveries of ergothioneine from cell pellets spiked with the analyte before cell lysis (97 +/- 3\%) matched those obtained for cell culture medium spiked before syringe filtration (96 +/- 9\%) demonstrating that sample preparation did not impair the quantitative determination of ergothioneine. When HepG2 cells were exposed to ergothioneine via the culture medium, they showed low absorption; approximately 3\% of the added ergothioneine was found in cell lysates, while most of it (>= 85\%) remained in the cell culture medium. The method is capable of separating ergothioneine from other biologically relevant sulfur-containing species and is expected to be of broad future use. Furthermore, the potential use for the simultaneous separation of selenium species, thereby extending the scope of possible applications, was demonstrated by applying it to water extracts of oyster mushrooms.}, language = {en} } @article{KroepflFrancesconiSchwerdtleetal.2019, author = {Kroepfl, Nina and Francesconi, Kevin A. and Schwerdtle, Tanja and Kuehnelt, Doris}, title = {Selenoneine and ergothioneine in human blood cells determined simultaneously by HPLC/ICP-QQQ-MS}, series = {Journal of Analytical Atomic Spectrometry}, volume = {34}, journal = {Journal of Analytical Atomic Spectrometry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0267-9477}, doi = {10.1039/c8ja00276b}, pages = {127 -- 134}, year = {2019}, abstract = {The possible relevance to human health of selenoneine and its sulfur-analogue ergothioneine has generated interest in their quantitative determination in biological samples. To gain more insight into the similarities and differences of these two species, a method for their simultaneous quantitative determination in human blood cells using reversed-phase high performance liquid chromatography (RP-HPLC) coupled to inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS) is presented. Spectral interferences hampering the determination of sulfur and selenium by ICPMS are overcome by introducing oxygen to the reaction cell. To access selenoneine and ergothioneine in the complex blood matrix, lysis of the cells with cold water followed by cut-off filtration (3000 Da) is performed. Recoveries based on blood cells spiked with selenoneine and ergothioneine were between 80\% and 85\%. The standard deviation of the method was around 0.10 mg S per L for ergothioneine (corresponding to relative standard deviations (RSD) between 10-1\% for ergothioneine concentrations of 1-10 mg S per L) and 0.25 g Se per L for selenoneine (RSDs of 25-2\% for concentrations of 1-10 g Se per L). The method was applied to blood cell samples from three volunteers which showed selenoneine and ergothioneine concentrations in the range of 3.25 to 7.35 g Se per L and 0.86 to 6.44 mg S per L, respectively. The method is expected to be of wide use in future studies investigating the dietary uptake of selenoneine and ergothioneine and their relevance in human health.}, language = {en} } @article{RohnMarschallKroepfletal.2018, author = {Rohn, Isabelle and Marschall, Talke Anu and Kr{\"o}pfl, Nina and Jensen, Kenneth Bendix and Aschner, Michael and Tuck, Simon and Kuehnelt, Doris and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans}, series = {Metallomics : integrated biometal science}, volume = {10}, journal = {Metallomics : integrated biometal science}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c8mt00066b}, pages = {818 -- 827}, year = {2018}, abstract = {The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and -glutamyl-MeSeCys (-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode.}, language = {en} } @article{RohnRaschkeAschneretal.2019, author = {Rohn, Isabelle and Raschke, Stefanie and Aschner, Michael and Tuck, Simon and Kuehnelt, Doris and Kipp, Anna Patricia and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {63}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201801304}, pages = {9}, year = {2019}, abstract = {ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.}, language = {en} } @article{MarschallBornhorstKuehneltetal.2016, author = {Marschall, Talke Anu and Bornhorst, Julia and Kuehnelt, Doris and Schwerdtle, Tanja}, title = {Differing cytotoxicity and bioavailability of selenite, methylselenocysteine, selenomethionine, selenosugar 1 and trimethylselenonium ion and their underlying metabolic transformations in human cells}, series = {Applied computing review : the publication of the ACM Special Interest Group on Applied Computing}, volume = {60}, journal = {Applied computing review : the publication of the ACM Special Interest Group on Applied Computing}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201600422}, pages = {2622 -- 2632}, year = {2016}, abstract = {Scope: The trace element selenium (Se) is an integral component of our diet. However, its metabolism and toxicity following elevated uptake are not fully understood. Since the either adverse or beneficial health effects strongly depend on the ingested Se species, five low molecular weight species were investigated regarding their toxicological effects, cellular bioavailability and species-specific metabolism in human cells. Methods and results: For the first time, the urinary metabolites methyl-2-acetamido-2-deoxy1- seleno-beta-D-galactopyranoside (selenosugar 1) and trimethylselenonium ion (TMSe) were toxicologically characterised in comparison to the food relevant species methylselenocysteine (MeSeCys), selenomethionine (SeMet) and selenite in human urothelial, astrocytoma and hepatoma cells. In all cell lines selenosugar 1 and TMSe showed no cytotoxicity. Selenite, MeSeCys and SeMet exerted substantial cytotoxicity, which was strongest in the urothelial cells. There was no correlation between the potencies of the respective toxic effects and the measured cellular Se concentrations. Se speciation indicated that metabolism of the respective species is likely to affect cellular toxicity. Conclusion: Despite being taken up, selenosugar 1 and TMSe are non-cytotoxic to urothelial cells, most likely because they are not metabolically activated. The absent cytotoxicity of selenosugar 1 and TMSe up to supra-physiological concentrations, support their importance as metabolites for Se detoxification.}, language = {en} } @article{RohnKroepflAschneretal.2019, author = {Rohn, Isabelle and Kroepfl, Nina and Aschner, Michael and Bornhorst, Julia and Kuehnelt, Doris and Schwerdtle, Tanja}, title = {Selenoneine ameliorates peroxide-induced oxidative stress in C. elegans}, series = {Journal of trace elements in medicine and biology}, volume = {55}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2019.05.012}, pages = {78 -- 81}, year = {2019}, abstract = {Scope: Selenoneine (2-selenyl-N-alpha, N-alpha, N-alpha-trimethyl-L-histidine), the selenium (Se) analogue of the ubiquitous thiol compound and putative antioxidant ergothioneine, is the major organic selenium species in several marine fish species. Although its antioxidant efficacy has been proposed, selenoneine has been poorly characterized, preventing conclusions on its possible beneficial health effects. Methods and results: Treatment of Caenorhabditis elegans (C. elegans) with selenoneine for 18 h attenuated the induction of reactive oxygen and nitrogen species (RONS). However, the effect was not immediate, occurring 48 h post-treatment. Total Se and Se speciation analysis revealed that selenoneine was efficiently taken up and present in its original form directly after treatment, with no metabolic transformations observed. 48 h posttreatment, total Se in worms was slightly higher compared to controls and no selenoneine could be detected. Conclusion: The protective effect of selenoneine may not be attributed to the presence of the compound itself, but rather to the activation of molecular mechanisms with consequences at more protracted time points.}, language = {en} }