@article{HuangHattermannKrysanovaetal.2013, author = {Huang, Shaochun and Hattermann, Fred Fokko and Krysanova, Valentina and Bronstert, Axel}, title = {Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {116}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-012-0586-2}, pages = {631 -- 663}, year = {2013}, abstract = {A general increase in precipitation has been observed in Germany in the last century, and potential changes in flood generation and intensity are now at the focus of interest. The aim of the paper is twofold: a) to project the future flood conditions in Germany accounting for various river regimes (from pluvial to nival-pluvial regimes) and under different climate scenarios (the high, A2, low, B1, and medium, A1B, emission scenarios) and b) to investigate sources of uncertainty generated by climate input data and regional climate models. Data of two dynamical Regional Climate Models (RCMs), REMO (REgional Model) and CCLM (Cosmo-Climate Local Model), and one statistical-empirical RCM, Wettreg (Wetterlagenbasierte Regionalisierungsmethode: weather-type based regionalization method), were applied to drive the eco-hydrological model SWIM (Soil and Water Integrated Model), which was previously validated for 15 gauges in Germany. At most of the gauges, the 95 and 99 percentiles of the simulated discharge using SWIM with observed climate data had a good agreement with the observed discharge for 1961-2000 (deviation within +/- 10 \%). However, the simulated discharge had a bias when using RCM climate as input for the same period. Generalized Extreme Value (GEV) distributions were fitted to the annual maximum series of river runoff for each realization for the control and scenario periods, and the changes in flood generation over the whole simulation time were analyzed. The 50-year flood values estimated for two scenario periods (2021-2060, 2061-2100) were compared to the ones derived from the control period using the same climate models. The results driven by the statistical-empirical model show a declining trend in the flood level for most rivers, and under all climate scenarios. The simulations driven by dynamical models give various change directions depending on region, scenario and time period. The uncertainty in estimating high flows and, in particular, extreme floods remains high, due to differences in regional climate models, emission scenarios and multi-realizations generated by RCMs.}, language = {en} } @article{HesseKrysanovaVetteretal.2013, author = {Hesse, Cornelia and Krysanova, Valentina and Vetter, Tobias and Reinhardt, Julia}, title = {Comparison of several approaches representing terrestrial and in-stream nutrient retention and decomposition in watershed modelling}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {269}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, number = {34}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2013.08.017}, pages = {70 -- 85}, year = {2013}, abstract = {Retention and transformation of nutrients within a river catchment are important mechanisms influencing water quality measured at the watershed outlet. Nutrient storage and reduction can occur in soils as well as in the river and should be considered in water quality modelling. Consideration is possible using various methods at several points during modelling cascade. The study compares the effects of five different equation sets implemented into the Soil and Water Integrated Model (SWIM), one describing terrestrial and four in-stream retention with a rising complexity (including algal growth and death at the highest complexity level). The influences of the different methods alone and in combinations on water quality model outputs (NO3-N, NH4-N, PO4-P) were analyzed for the outlet of the large-scale Saale basin in Germany. Experiments revealed that nutrient forms coming primarily from diffuse sources are mostly influenced by retention processes in the soils of the catchment, and river processes are less important. Nutrients introduced to the river mainly by point sources are more subject to retention by in-stream processes, but both nutrient retention and transformation processes in soils and rivers have to be included. Although the best overall results could be achieved at the highest complexity level, the calibration efforts for this case are extremely high, and only minor improvements of overall model performance with the highest complexity were detected. Therefore, it could be reasoned that for some research questions also less complex model approaches would be sufficient, which could help to reduce unnecessary complexity and diminish high uncertainty in water quality modelling at the catchment scale. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} }