@article{ScherbaumKruegerWeber1997, author = {Scherbaum, Frank and Kr{\"u}ger, Frank and Weber, Michael H.}, title = {Double beam imaging : mapping lower mantle heterogeneities using combinations of source and receiver arrays}, year = {1997}, language = {en} } @article{BrechnerKlingeKruegeretal.1998, author = {Brechner, Stefan and Klinge, Klaus and Kr{\"u}ger, Frank and Plenefisch, Thomas}, title = {Backazimuthal variations of splitting parameters of teleseismic SKS phases observed at the broadband stations in Germany}, year = {1998}, language = {en} } @article{WeberWicksKruegeretal.1998, author = {Weber, Michael H. and Wicks, Chuck and Kr{\"u}ger, Frank and Jahnke, Gunnar and Schlittenhardt, J{\"o}rg}, title = {Asymmetric radiation of seismic waves from an atoll : nuclear tests in French Polynesia}, year = {1998}, language = {en} } @article{KruegerGrosserBaumbachetal.1998, author = {Kr{\"u}ger, Frank and Grosser, H. and Baumbach, M. and Berckhemer, Hans}, title = {The Erzincan (Turkey) earthquake (Ms 6.8) of March 13, 1992 and its aftershock sequence}, year = {1998}, language = {en} } @article{FriedrichKruegerKlinge1998, author = {Friedrich, Andree and Kr{\"u}ger, Frank and Klinge, Klaus}, title = {Ocean generated microseismic noise located with the Graefenberg array}, year = {1998}, language = {en} } @article{FreybourgerKruegerAchauer1999, author = {Freybourger, Marion and Kr{\"u}ger, Frank and Achauer, Ulrich}, title = {A 22 degree long seismic profile for the study of the top D"}, year = {1999}, language = {en} } @article{KruegerDahm1999, author = {Kr{\"u}ger, Frank and Dahm, Torsten}, title = {Higher degree moment inversin using far-field broad-band recordings : theory and evaluation of the method with application to the 1994 Bolivia deep earthauke}, year = {1999}, language = {en} } @article{WeberWicksKruegeretal.2000, author = {Weber, Michael H. and Wicks, Chuck and Kr{\"u}ger, Frank and Jahnke, Gunnar and Baumann, M.}, title = {Reply to comment on "Asymmetric radiation of seismic waves from an atoll : Nuclear tests in French Polynesia" by A. Douglas}, year = {2000}, language = {en} } @article{RoesslerRumpkerKrueger2004, author = {R{\"o}ßler, Dirk and Rumpker, Georg and Kr{\"u}ger, Frank}, title = {Ambiguous moment tensors and radiation patterns in anisotropic media with applications to the modeling of earthquake mechanisms in W-Bohemia}, issn = {0039-3169}, year = {2004}, abstract = {Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure- shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along- path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components. The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion}, language = {en} } @article{KitoKruegerNegishi2004, author = {Kito, Tadashi and Kr{\"u}ger, Frank and Negishi, H.}, title = {Seismic heterogeneous structure in the lowermost mantle beneath the southwestern Pacific}, year = {2004}, abstract = {The P and S wave velocity structure of the D" layer beneath the southwestern Pacific was investigated by using short-period data from 12 deep events in the Tonga-Fiji region recorded by the J-Array and the Hi-net (two large- aperture seismic arrays) in Japan. Reflected wave beam forming (RWB) and a migration method were used to extract weak signals originating from heterogeneities in the lowermost mantle. In order to acquire high resolution a double-array method was applied to the data. The results of the RWB method indicate that seismic energy is reflected at discontinuities near the depths of 2520 and 2650 km, which have a negative P wave velocity contrast of 1\% at the most. In addition, there is a positive seismic discontinuity at a depth of 2800 km. In the case of the S wave, reflected energy is produced almost at the same depth (2550 km depth). An apparent depth shift (50 km) of the discontinuity at the depth of 2850 km may indicate that the S wave velocity reduction in the lowermost mantle is similar to2-3 times stronger than that of P. A two-dimensional cross section, constructed with the RWB method, suggests that the observed discontinuities can be characterized as intermittent lateral heterogeneities whose lateral extent is a few hundred kilometers. The migration shows weak evidence of scattering objects which belong to the seismic discontinuities detected by the RWB method. These anomalous structures may represent a part of hot plume generated beneath the southwestern Pacific in the lowermost mantle}, language = {en} } @article{KrugerOhrnberger2005, author = {Kruger, Frank and Ohrnberger, Matthias}, title = {Tracking the rupture of the M-w=9.3 Sumatra earthquake over 1,150 km at teleseismic distance}, issn = {0028-0836}, year = {2005}, abstract = {On 26 December 2004, a moment magnitude M-w = 9.3 earthquake occurred along Northern Sumatra, the Nicobar and Andaman islands, resulting in a devastating tsunami in the Indian Ocean region(1). The rapid and accurate estimation of the rupture length and direction of such tsunami-generating earthquakes is crucial for constraining both tsunami wave- height models as well as the seismic moment of the events. Compressional seismic waves generated at the hypocentre of the Sumatra earthquake arrived after about 12 min at the broadband seismic stations of the German Regional Seismic Network (GRSN)(2,3), located approximately 9,000 km from the event. Here we present a modification of a standard array- seismological approach and show that it is possible to track the propagating rupture front of the Sumatra earthquake over a total rupture length of 1,150 km. We estimate the average rupture speed to be 2.3-2.7 km s(-1) and the total duration of rupture to be at least 430 s, and probably between 480 and 500 s.}, language = {en} } @article{KruegerOhrnberger2005, author = {Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Spatio-temporal source characteristics of the 26 December 2004 Sumatra earthquake as imaged by teleseismic broadband arrays}, year = {2005}, abstract = {We test the capability of broadband arrays at teleseismic distances to image the spatio-temporal characteristics of the seismic energy release during the Dec 26, 2004 Sumatra earthquake at early observation times. Using a non-plane-wave array location technique previously reported values for rupture length (about 1150 km), duration (about 480 s), and average rupture velocity (2.4-2.7 km/s) are confirmed. Three dominant energy releases are identified: one near the hypocenter, a second at 6 degrees N94 degrees E about 130 s later and a third one after 300 s at 9 degrees N92-93 degrees E. The spatio-temporal distribution of the radiated seismic energy in the source region is calculated from the stacked broadband recordings of two arrays in Germany and Japan and results in rough estimates of the total seismic energy of 0.55.10(18) Nm (GRSN) and 1.53.10(18) Nm (FNET) respectively. Changes in the relative ratio of energy as function of spatio-temporal location indicate a rotation of the focal mechanism during the rupture process}, language = {en} } @article{DahmKruegerEssenetal.2005, author = {Dahm, Torsten and Kr{\"u}ger, Frank and Essen, Heinz-Hermann and Hensch, Martin}, title = {Historic microseismic data and their relation to the wave-climate in the North Atlantic}, year = {2005}, abstract = {Microseismic data from observatories in Europe, which have been continuously recorded since about 100 years, contain information on the wave-climate in the North Atlantic. They can potentially be used as additional constraints in high-resolution temporal and spatial reconstructions of the storminess and oceanic waveheights in the past. To resolve spatial patterns data from observatories in different regions are needed. While previous recent studies analyzed only few observatory archives and relatively short time ranges, this is a first attempt to process the whole available data archive from different observatories. We correct and compare smoothed microseismic data from different stations and discuss their correlation and possible use for studies of storminess variability. Microseismic amplitudes at four seismic stations in northern Europe show amplitude peaks in 1920 and 1925, a slow decline in amplitudes till the middle of the 1930's followed by a steady increase of amplitudes till about 1990. From 1990 on microseismic amplitudes decrease. We find a good correlation between the average surface wind velocity in the North Atlantic and microseismic amplitudes at inland stations far away from the coast. Coastal stations are more influenced by local swell and are thus potentially useful to recover regional changes in wind and ocean wavefields with time. The study demonstrates that the analysis of microseismic has the potential to assess climate changes during the last 100 years}, language = {en} } @article{RoesslerKruegerRuempkeretal.2006, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and R{\"u}mpker, Georg and Psencik, Ivan}, title = {Tensile source components of swarm events in West Bohemia in 2000 by considering seismic anisotropy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12975}, year = {2006}, abstract = {Earthquake swarms occur frequently in West Bohemia, Central Europe. Their occurrence is correlated with and propably triggered by fluids that escape on the earth's surface near the epicentres. These fluids raise up periodically from a seemingbly deep-seated source in the upper mantle. Moment tensors for swarm events in 1997 indicate tensile faulting. However, they were determined under assumption of seismic isotropy although anisotropy can be observed. Anisotropy may obscure moment tensors and their interpretation. In 2000, more than 10,000 swarm earthquakes occurred near Novy Kostel, West Bohemia. Event triggering by fluid injection is likely. Activity lasted from 28/08 until 31/12/00 (9 phases) with maximum ML=3.2. High quality P-wave seismograms were used to retrieve the source mechanisms for 112 events between 28/08/00 and 30/10/00 using > 20 stations. We determine the source geometry using a new algorithm and different velocity models including anisotropy. From inversions of P waves we observe ML<3.2, strike-slip events on steep N-S oriented faults with additional normal or reverse components. Tensile components seem to be evident for more than 60\% of the processed swarm events in West Bohemia during the phases 1-7. Being most significant at great depths and at phases 1-4 during the swarm they are time and location dependent. Although tensile components are reduced when anisotropy is assumed they persist and seem to be important. They can be explained by pore-pressure changes due to the injection of fluids that raise up. Our findings agree with other observations e.g. correlation of fluid transport and seismicity, variations in b-value, forcing rate, and in pore pressure diffusion. Tests of our results show their significance.}, language = {en} } @misc{RoesslerKruegerOhrnberger2007, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Rupture propagation of recent large TsE off-coast Sumatra and Java}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13039}, year = {2007}, abstract = {The spatio-temporal evolution of the three recent tsunamogenic earthquakes (TsE) off-coast N-Sumatra (Mw9.3), 28/03/2005 (Mw8.5) off-coast Nias, on 17/07/2006 (Mw7.7) off-coast Java. Start time, duration, and propagation of the rupture are retrieved. All parameters can be obtained rapidly after recording of the first-arrival phases in near-real time processing. We exploit semblance analysis, backpropagation and broad-band seismograms within 30°-95° distance. Image enhancement is reached by stacking the semblance of arrays within different directions. For the three events, the rupture extends over about 1150, 150, and 200km, respectively. The events in 2004, 2005, and 2006 had source durations of at least 480s, 120s, and 180s, respectively. We observe unilateral rupture propagation for all events except for the rupture onset and the Nias event, where there is evidence for a bilateral start of the rupture. Whereas average rupture speed of the events in 2004 and 2005 is in the order of the S-wave speed (≈2.5-3km/s), unusually slow rupturing (≈1.5 km/s) is indicated for the July 2006 event. For the July 2006 event we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power generally increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes.}, language = {en} } @article{RoesslerKruegerOhrnberger2007, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Rupture propagation of the TsE (Mw7.7) on 17 July 2006 off-coast Java}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12964}, year = {2007}, abstract = {The Mw=7.7 tsunamogenic earthquake (TsE) on 17 July 2006, 08:19:28 shock the Indian Ocean at about 15 km depth off-coast Java, Indonesia. It caused a local tsunami with wave heights exceeding 2 m. The death toll reached several hundred. Thousands of people were displaced. By means of standard array methods, we have investigated the propagation and the extent of the rupture front of the causative earthquake. Waveform similarity is expressed by means of the semblance. We back-propagate the semblance for first-arrival phases recorded at broad-band stations within teleseismic distances (30°-95°). Image enhancement is realised by stacking the semblance of 8 arrays within different epicentral and azimuthal directions. From teleseismic observations we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE and source duration >125 s. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Unusually slow rupturing (≈1.5 km/s) is indicated. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes.}, language = {en} } @article{LipkeZitzmannAmbergeretal.2007, author = {Lipke, Katrin and Zitzmann, Max and Amberger, Manuel and Ehlert, Carsten and R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ohrnberger, Matthias}, title = {Traveltime residuals at regional and teleseismic distances for SE-Asia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14117}, year = {2007}, abstract = {Traveltime residuals for worldwide seismic stations are calculated. We use P and S waves from earthquakes in SE-Asia at teleseismic and regional distances. The obtained station residuals help to enhance earthquake localisation. Furthermore we calculated regional source dependent station residuals. They show a systematic dependence of the locality of the source. These source dependent residuals reflect heterogenities along the path and can be used for a refinement of earthquake localisation.}, language = {en} } @misc{KruegerOhrnbergerRoessler2008, author = {Kr{\"u}ger, Frank and Ohrnberger, Matthias and R{\"o}ßler, Dirk}, title = {Rupture imaging of large earthquakes with a poststack isochrone migration method}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18395}, year = {2008}, abstract = {Rapid and robust characterization of large earthquakes in terms of their spatial extent and temporal duration is of high importance for disaster mitigation and early warning applications. Backtracking of seismic P-waves was successfully used by several authors to image the rupture process of the great Sumatra earthquake (26.12.2004) using short period and broadband arrays. We follow here an approach of Walker et al. to backtrack and stack broadband waveforms from global network stations using traveltimes for a global Earth model to obtain the overall spatio-temporal development of the energy radiation of large earthquakes in a quick and robust way. We present results for selected events with well studied source processes (Kokoxili 14.11.2001, Tokachi-Oki 25.09.2003, Nias 28.03.2005). Further, we apply the technique in a semi-real time fashion to broadband data of earthquakes with a broadband magnitude >= 7 (roughly corresponding to Mw 6.5). Processing is based on first automatic detection messages from the GEOFON extended virtual network (GEVN).}, language = {en} } @misc{LipkeKruegerRoessler2008, author = {Lipke, Katrin and Kr{\"u}ger, Frank and R{\"o}ßler, Dirk}, title = {Subduction zone structure along Sumatra from receiver functions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18260}, year = {2008}, abstract = {Receiver functions are a good tool to investigate the seismotectonic structure beneath the a seismic station. In this study we apply the method to stations situated on or near Sumatra to find constraints on a more detailed velocity model which should improve earthquake localisation. We estimate shallow Moho-depths (~ 21 km) close to the trench and depths of ~30 km at greater distances. First evidences for the dip direction of the slab of ~60° are provided. Receiver functions were calculated for 20 stations for altogether 110 earthquakes in the distance range between 30° and 95° from the receiver. However the number of receiver functions per station is strongly variable as it depends on the installation date, the signal-to-noise-ratio of the station and the reliability of the acquisition.}, language = {en} } @misc{RoesslerKruegerOhrnbergeretal.2008, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Ehlert, Lutz}, title = {Automatic near real-time characterisation of large earthquakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-20191}, year = {2008}, abstract = {An der Universit{\"a}t Potsdam wird seit 2008 ein automatisiertes Verfahren angewandt, um Bruchparamter großer Erdbeben in quasi-Echtzeit, d.h. wenige Minuten nachdem sich das Beben ereignet hat, zu bestimmen und der {\"O}ffentlichkeit via Internet zur Verf{\"u}gung zu stellen. Es ist vorgesehen, das System in das Deutsch-Indonesische Tsunamifr{\"u}hwarnsystem (GITEWS) zu integrieren, f{\"u}r das es speziell konfiguriert ist. Wir bestimmen insbesondere die Dauer und die Ausdehnung des Erdbebens, sowie dessen Bruchgeschwindigkeit und -richtung. Dabei benutzen wir die Seismogramme der zuerst eintreffenden P Wellen vom Breitbandstationen in teleseimischer Entfernung vom Beben sowie herk{\"o}mmliche Arrayverfahren in teilweise modifizierter Form. Die Semblance wir als {\"A}hnlichkeitsmaß verwendet, um Seismogramme eines Stationsnetzes zu vergleichen. Im Falle eines Erdbebens ist die Semblance unter Ber{\"u}cksichtigung des Hypozentrums zur Herdzeit und w{\"a}hrend des Bruchvorgangs deutlich zeitlich und r{\"a}umlich erh{\"o}ht und konzentriert. Indem wir die Ergebnisse verschiedener Stationsnetzwerke kombinieren, erreichen wir Unabh{\"a}ngigkeit von der Herdcharakteristik und eine raum-zeitliche Aufl{\"o}sung, die es erlaubt die o.g. Parameter abzuleiten. In unserem Beitrag skizzieren wir die Methode. Anhand der beiden M8.0 Benkulu Erdbeben (Sumatra, Indonesien) vom 12.09.2007 und dem M8.0 Sichuan Ereignis (China) vom 12.05.2008 demonstrieren wir Aufl{\"o}sungsm{\"o}glichkeiten und vergleichen die Ergebnisse der automatisierten Echtzeitanwendung mit nachtr{\"a}glichen Berechnungen. Weiterhin stellen wir eine Internetseite zur Verf{\"u}gung, die die Ergebnisse pr{\"a}sentiert und animiert. Diese kann z.B. in geowissenschaftlichen Einrichtungen an Computerterminals gezeigt werden. Die Internetauftritte haben die folgenden Adressen: http://www.geo.uni-potsdam.de/arbeitsgruppen/Geophysik_Seismologie/forschung/ruptrack/openday http://www.geo.uni-potsdam.de/arbeitsgruppen/Geophysik_Seismologie/forschung/ruptrack}, language = {en} }