@article{KielingRoesslerKrueger2011, author = {Kieling, Katrin and R{\"o}ßler, Dirk and Kr{\"u}ger, Frank}, title = {Receiver function study in northern Sumatra and the Malaysian peninsula}, series = {Journal of seismology}, volume = {15}, journal = {Journal of seismology}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-010-9222-7}, pages = {235 -- 259}, year = {2011}, abstract = {In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V (S)) near the surface in the range of 3.4-3.6 km s (-aEuro parts per thousand 1) attributed to crystalline rocks and 3.6-4.0 km s (-aEuro parts per thousand 1) in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30-34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V (S) of 2.6-2.9 km s (-aEuro parts per thousand 1) indicate sediment layers. High V (S) of 4.2 km s (-aEuro parts per thousand 1) are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V (S) between 10 and 20 km depth. Within the subducting slab V (S) a parts per thousand aEuro parts per thousand 4.7 km s (-aEuro parts per thousand 1). At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20A degrees +/- 8A degrees in approximately N 60A degrees E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.}, language = {en} } @article{CzubaGradMjeldeetal.2011, author = {Czuba, Wojciech and Grad, Marek and Mjelde, Rolf and Guterch, Aleksander and Libak, Audun and Kr{\"u}ger, Frank and Murai, Yoshio and Schweitzer, Johannes}, title = {Continent-ocean-transition across a trans-tensional margin segment: off Bear Island, Barents Sea}, series = {Geophysical journal international}, volume = {184}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {IPY Project Grp}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2010.04873.x}, pages = {541 -- 554}, year = {2011}, abstract = {P>A 410 km long Ocean Bottom Seismometer profile spanning from the Bear Island, Barents Sea to oceanic crust formed along the Mohns Ridge has been modelled by use of ray-tracing with regard to observed P-waves. The northeastern part of the model represents typical continental crust, thinned from ca. 30 km thickness beneath the Bear Island to ca. 13 km within the Continent-Ocean-Transition. Between the Hornsund FZ and the Kn circle divide legga Fault, a 3-4 km thick sedimentary basin, dominantly of Permian/Carboniferous age, is modelled beneath the ca. 1.5 km thick layer of volcanics (Vestbakken Volcanic Province). The P-wave velocity in the 3-4 km thick lowermost continental crust is significantly higher than normal (ca. 7.5 km s-1). We interpret this layer as a mixture of mafic intrusions and continental crystalline blocks, dominantly related to the Paleocene-Early Eocene rifting event. The crystalline portion of the crust within the south-western part of the COT consists of a ca. 30 km wide and ca. 6 km thick high-velocity (7.3 km s-1) body. We interpret the body as a ridge of serpentinized peridotites. The magmatic portion of the ocean crust accreted along the Knipovich Ridge from continental break-up at ca. 35 Ma until ca. 20 Ma is 3-5 km thicker than normal. We interpret the increased magmatism as a passive response to the bending of this southernmost part of the Knipovich Ridge. The thickness of the magmatic portion of the crust formed along the Mohns Ridge at ca. 20 Ma decreases to ca. 3 km, which is normal for ultra slow spreading ridges.}, language = {en} } @article{PreussevanderMeerDeshpandeetal.2011, author = {Preusse, Franziska and van der Meer, Elke and Deshpande, Gopikrishna and Kr{\"u}ger, Frank and Wartenburger, Isabell}, title = {Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning}, series = {Frontiers in human neuroscienc}, volume = {5}, journal = {Frontiers in human neuroscienc}, number = {3}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2011.00022}, pages = {14}, year = {2011}, abstract = {Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation-intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence.}, language = {en} } @misc{DonnerRoesslerKruegeretal.2011, author = {Donner, Stefanie and R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ghods, Abdolreza and Strecker, Manfred}, title = {Source mechanisms of the 2004 Baladeh (Iran) earthquake sequence from Iranian broadband and short-period data and seismotectonic implications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53982}, year = {2011}, abstract = {The northward movement and collision of the Arabian plate with Eurasia generates compressive stresses and resulting shortening in Iran. Within the Alborz Mountains, North Iran, a complex and not well understood system of strike-slip and thrust faults accomodates a fundamental part of the NNE-SSW oriented shortening. On 28th of May 2004 the Mw 6.3 Baladeh earthquake hit the north-central Alborz Mountains. It is one of the rare and large events in this region in modern time and thus a seldom chance to study earthquake mechanisms and the local ongoing deformation processes. It also demonstrated the high vulnerability of this densily populated region.}, language = {en} }