@article{KlaumuenzerKroener2009, author = {Klaum{\"u}nzer, Bastian and Kroener, Dominik}, title = {N-Inversion in 2-azabicyclopentane derivatives : model simulations for a laser controlled molecular switch}, issn = {1144-0546}, doi = {10.1039/B812319e}, year = {2009}, abstract = {We report model quantum simulations for the nitrogen inversion in 2-azabicyclo[1.1.1] pentane derivates controlled by laser pulses proposing to use this class of molecules as molecular switches. The derivatives trans-5- fluoro-2-methyl-2-azabicyclo[1.1.1] pentane and cis-5-fluoro-2-methyl-2-azabicyclo[1.1.1] pentane are investigated by means of density functional theory and quantum wave packet dynamics. The molecules have two stable, i.e. energetically well-separated, conformers along the N-inversion coordinate. In 1D model simulations the transformation from one conformer to the other is accomplished in the electronic ground state by using two overlapping chirped linearly polarized IR laser pulses for the trans-and cis-isomer or alternatively via an electronic excited state employing a pump- dump sequence of ultrashort UV laser pulses.}, language = {en} } @article{KroenerSchimkaKlamroth2014, author = {Kroener, Dominik and Schimka, Selina and Klamroth, Tillmann}, title = {Laser control for coupled torsions in chiroptical switches: a combined quantum and classical dynamics approach}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp410342a}, pages = {1322 -- 1331}, year = {2014}, abstract = {We present a novel laser pulse control for the chiroptical switch 1-(2-cis-fluoroethenyl)-2-fluoro-3,5-dibromobenzene mounted on adamantane, where the latter imitates a linker group or part of a solid surface. This molecular device offers three switching states: a true achiral "off"-state and two chiral "on"-states of opposite handedness. Due to the alignment of its chiral axis along the surface normal several defined orientations of the switch have to be considered for an efficient stereocontrol strategy. In addition to these different initial conditions, coupled torsional degrees of freedom around the chiral axis make the quest for highly stereoselective laser pulses a challenge. The necessary flexibility in pulse accomplished by employing the iterative stochastic pulse optimization method we presented recently. Still, the complexity of the system dictates a combined treatment by fast molecular dynamics and computationally intensive quantum dynamics. Although quantum effects are found to be of importance, the pulses optimized within the classical treatment allow us to turn on the chirality of the switch, achieving high enantioselectivity in the quantum treatment for all orientations at the same time.}, language = {en} } @article{HorschUrbaschWeitzeletal.2011, author = {Horsch, Philipp and Urbasch, Gunter and Weitzel, Karl-Michael and Kroener, Dominik}, title = {Circular dichroism in ion yields employing femtosecond laser ionization-the role of laser pulse duration}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c0cp01903h}, pages = {2378 -- 2386}, year = {2011}, abstract = {The circular dichroism (CD) induced by femtosecond laser pulse excitation of 3-methylcyclopentanone has been investigated by means of experiment and theory as a function of the laser pulse duration. In the experiment the CD in ion yields is measured by femtosecond laser ionization via a one-photon resonant excited state. In the theoretical part the CD is calculated by solving laser driven quantum electron dynamics for the same resonant excitation based on ab initio electronic structure calculations employing a complete description of the electric field-electric dipole and magnetic field-magnetic dipole interactions. Both the experimentally measured CD in ion yields and the calculated CD in excited state populations exhibit a marked increase of the CD for pulse duration increasing from 50 fs to about 200 fs. Beyond 200 fs pulse duration the CD levels off. The combination of experimental and theoretical evidences indicates that the CD decreases with increasing laser intensity connected to the increased coupling between the excited states.}, language = {en} } @article{Kroener2015, author = {Kroener, Dominik}, title = {Laser-driven electron dynamics for circular dichroism in mass spectrometry: from onephoton excitations to multiphoton ionization}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp02193f}, pages = {19643 -- 19655}, year = {2015}, abstract = {The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population.}, language = {en} }