@article{CironeNegrettiCalarcoetal.2005, author = {Cirone, M. A. and Negretti, Antonio and Calarco, T. and Kr{\"u}ger, P. and Schmiedmayer, J{\"o}rg}, title = {A simple quantum gate with atom chips}, year = {2005}, abstract = {We present a simple scheme for implementing an atomic phase gate using two degrees of freedom for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the performance of this collisional phase gate and show that gate operations with high fidelity can be realized in magnetic traps that are currently available on atom chips}, language = {en} } @article{ZhangHenkelHalleretal.2005, author = {Zhang, B. and Henkel, Carsten and Haller, E. and Wildermuth, S. and Hofferberth, S. and Kruger, P. and Schmiedmayer, J{\"o}rg}, title = {Relevance of sub-surface chip layers for the lifetime of magnetically trapped atoms}, year = {2005}, abstract = {We investigate the lifetime of magnetically trapped atoms above a planar, layered atom chip structure. Numerical calculations of the thermal magnetic noise spectrum are performed, based on the exact magnetic Green function and multi layer reflection coefficients. We have performed lifetime measurements where the center of a side guide trap is laterally shifted with respect to the current carrying wire using additional bias fields. Comparing the experiment to theory, we find a fair agreement and demonstrate that for a chip whose topmost layer is metallic, the magnetic noise depends essentially on the thickness of that layer, as long as the layers below have a, much smaller conductivity; essentially the same magnetic noise would be obtained with a metallic membrane suspended in vacuum. Based on our theory we give general scaling laws of how to reduce the effect of surface magnetic noise on the trapped atoms}, language = {en} }