@article{SchuhLomadzeRueheetal.2011, author = {Schuh, Christian and Lomadze, Nino and R{\"u}he, J{\"u}rgen and Kopyshev, Alexey and Santer, Svetlana}, title = {Photomechanical degrafting of Azo-functionalized Poly(methacrylic acid) (PMAA) brushes}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {115}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp2041229}, pages = {10431 -- 10438}, year = {2011}, abstract = {We report on the preparation and characterization of photosensitive polymer brushes. The brushes are synthesized through polymer analogous attachment of azobenzene groups to surface-attached poly(methacrylic acid) (PMAA) chains. The topography of the photosensitive brushes shows a strong reaction upon irradiation with UV light. While homogeneous illumination leaves the polymer topography unchanged, irradiation of the samples with interference patterns with periodically varying light intensity leads to the formation of surface relief gratings (SRG). The height of the stripes of the grating can be controlled by adjusting the irradiation time. The SRG pattern can be erased through solvent treatment when the periodicity of the stripe pattern is less than the length of the fully stretched polymer chains. In the opposite case, photomechanical scission of receding polymer chains is observed during SRG formation, and the inscribed patterns are permanent.}, language = {en} } @article{LomadzeKopyshevRueheetal.2011, author = {Lomadze, Nino and Kopyshev, Alexey and R{\"u}he, J{\"u}rgen and Santer, Svetlana}, title = {Light-Induced chain scission in photosensitive polymer brushes}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma201016q}, pages = {7372 -- 7377}, year = {2011}, abstract = {We report on a process inducing photomechanical fracture of chemical bonds in photosensitive PMAA polymer brushes. The photosensitive PMAA polymer brushes were prepared by covalent attachment of azobenzene groups to poly(methylacrylic acid) (PMAA) chains generated by surface-initiated polymerization. While homogeneous irradiation leaves the polymer topography unchanged, the azo-PMAA brushes show a strong response upon irradiation with UV interference patterns. The photoisomerization process in the surface-attached polymer films results in the irreversible formation of surface relief gratings (SRG), which are strongly enhanced upon washing with a good solvent for the polymer. The photomechanical forces during mass transport induced by the irradiation lead to the scission of covalent bounds and accordingly to a degrafting of the polymer chains in areas where the polymer is receding from. It is observed that the number of ruptured chains depends strongly on the amount of azo side chains in the polymer.}, language = {en} }