@phdthesis{Kopetzki2011, author = {Kopetzki, Daniel}, title = {Exploring hydrothermal reactions : from prebiotic synthesis to green chemistry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52581}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In this thesis chemical reactions under hydrothermal conditions were explored, whereby emphasis was put on green chemistry. Water at high temperature and pressure acts as a benign solvent. Motivation to work under hydrothermal conditions was well-founded in the tunability of physicochemical properties with temperature, e.g. of dielectric constant, density or ion product, which often resulted in surprising reactivity. Another cornerstone was the implementation of the principles of green chemistry. Besides the use of water as solvent, this included the employment of a sustainable feedstock and the sensible use of resources by minimizing waste and harmful intermediates and additives. To evaluate the feasibility of hydrothermal conditions for chemical synthesis, exemplary reactions were performed. These were carried out in a continuous flow reactor, allowing for precise control of reaction conditions and kinetics measurements. In most experiments a temperature of 200 °C in combination with a pressure of 100 bar was chosen. In some cases the temperature was even raised to 300 °C. Water in this subcritical range can also be found in nature at hydrothermal vents on the ocean floor. On the primitive earth, environments with such conditions were however present in larger numbers. Therefore we tested whether biologically important carbohydrates could be formed at high temperature from the simple, probably prebiotic precursor formaldehyde. Indeed, this formose reaction could be carried out successfully, although the yield was lower compared to the counterpart reaction under ambient conditions. However, striking differences regarding selectivity and necessary catalysts were observed. At moderate temperatures bases and catalytically active cations like Ca2+ are necessary and the main products are hexoses and pentoses, which accumulate due to their higher stability. In contrast, in high-temperature water no catalyst was necessary but a slightly alkaline solution was sufficient. Hexoses were only formed in negligible amounts, whereas pentoses and the shorter carbohydrates accounted for the major fraction. Amongst the pentoses there was some preference for the formation of ribose. Even deoxy sugars could be detected in traces. The observation that catalysts can be avoided was successfully transferred to another reaction. In a green chemistry approach platform chemicals must be produced from sustainable resources. Carbohydrates can for instance be employed as a basis. They can be transformed to levulinic acid and formic acid, which can both react via a transfer hydrogenation to the green solvent and biofuel gamma-valerolactone. This second reaction usually requires catalysis by Ru or Pd, which are neither sustainable nor low-priced. Under hydrothermal conditions these heavy metals could be avoided and replaced by cheap salts, taking advantage of the temperature dependence of the acid dissociation constant. Simple sulfate was recognized as a temperature switchable base. With this additive high yield could be achieved by simultaneous prevention of waste. In contrast to conventional bases, which create salt upon neutralization, a temperature switchable base becomes neutral again when cooled down and thus can be reused. This adds another sustainable feature to the high atom economy of the presented hydrothermal synthesis. In a last study complex decomposition pathways of biomass were investigated. Gas chromatography in conjunction with mass spectroscopy has proven to be a powerful tool for the identification of unknowns. It was observed that several acids were formed when carbohydrates were treated with bases at high temperature. This procedure was also applied to digest wood. Afterwards it was possible to fermentate the solution and a good yield of methane was obtained. This has to be regarded in the light of the fact that wood practically cannot be used as a feedstock in a biogas factory. Thus the hydrothermal pretreatment is an efficient means to employ such materials as well. Also the reaction network of the hydrothermal decomposition of glycine was investigated using isotope-labeled compounds as comparison for the unambiguous identification of unknowns. This refined analysis allowed the identification of several new molecules and pathways, not yet described in literature. In summary several advantages could be taken from synthesis in high-temperature water. Many catalysts, absolutely necessary under ambient conditions, could either be completely avoided or replaced by cheap, sustainable alternatives. In this respect water is not only a green solvent, but helps to prevent waste and preserves resources.}, language = {en} } @unpublished{KopetzkiSeeberger2012, author = {Kopetzki, Daniel and Seeberger, Peter H.}, title = {Photochemistry in fight against malaria}, series = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, volume = {60}, journal = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, number = {7-8}, publisher = {Ges. Dt. Chemiker}, address = {Frankfurt, Main}, issn = {1439-9598}, pages = {714 -- 717}, year = {2012}, language = {de} }