@article{AlbrechtJanietzSchindleretal.2012, author = {Albrecht, Steve and Janietz, Silvia and Schindler, Wolfram and Frisch, Johannes and Kurpiers, Jona and Kniepert, Juliane and Inal, Sahika and Pingel, Patrick and Fostiropoulos, Konstantinos and Koch, Norbert and Neher, Dieter}, title = {Fluorinated Copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells}, series = {Journal of the American Chemical Society}, volume = {134}, journal = {Journal of the American Chemical Society}, number = {36}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja305039j}, pages = {14932 -- 14944}, year = {2012}, abstract = {A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC70BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC70BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58\% are achieved, giving a highest energy conversion efficiency of 6.16\%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells.}, language = {en} } @article{CaprioglioZuWolffetal.2019, author = {Caprioglio, Pietro and Zu, Fengshuo and Wolff, Christian Michael and Prieto, Jose A. Marquez and Stolterfoht, Martin and Becker, Pascal and Koch, Norbert and Unold, Thomas and Rech, Bernd and Albrecht, Steve and Neher, Dieter}, title = {High open circuit voltages in pin-type perovskite solar cells through strontium addition}, series = {Sustainable Energy \& Fuels}, volume = {3}, journal = {Sustainable Energy \& Fuels}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2398-4902}, doi = {10.1039/c8se00509e}, pages = {550 -- 563}, year = {2019}, abstract = {The incorporation of even small amounts of strontium (Sr) into lead-base hybrid quadruple cation perovskite solar cells results in a systematic increase of the open circuit voltage (V-oc) in pin-type perovskite solar cells. We demonstrate via absolute and transient photoluminescence (PL) experiments how the incorporation of Sr significantly reduces the non-radiative recombination losses in the neat perovskite layer. We show that Sr segregates at the perovskite surface, where it induces important changes of morphology and energetics. Notably, the Sr-enriched surface exhibits a wider band gap and a more n-type character, accompanied with significantly stronger surface band bending. As a result, we observe a significant increase of the quasi-Fermi level splitting in the neat perovskite by reduced surface recombination and more importantly, a strong reduction of losses attributed to non-radiative recombination at the interface to the C-60 electron-transporting layer. The resulting solar cells exhibited a V-oc of 1.18 V, which could be further improved to nearly 1.23 V through addition of a thin polymer interlayer, reducing the non-radiative voltage loss to only 110 meV. Our work shows that simply adding a small amount of Sr to the precursor solutions induces a beneficial surface modification in the perovskite, without requiring any post treatment, resulting in high efficiency solar cells with power conversion efficiency (PCE) up to 20.3\%. Our results demonstrate very high V-oc values and efficiencies in Sr-containing quadruple cation perovskite pin-type solar cells and highlight the imperative importance of addressing and minimizing the recombination losses at the interface between perovskite and charge transporting layer.}, language = {en} } @article{CastellaniSalzmannBugnonetal.2009, author = {Castellani, Mauro and Salzmann, Ingo and Bugnon, Philippe and Yu, Shuwen and Oehzelt, Martin and Koch, Norbert}, title = {Structural and electronic implications for carrier injection into organic semiconductors}, issn = {0947-8396}, doi = {10.1007/s00339-009-5336-6}, year = {2009}, abstract = {We report on the structural and electronic interface formation between ITO (indium-tin-oxide) and prototypical organic small molecular semiconductors, i.e., CuPc (copper phthalocyanine) and alpha-NPD (N,N'-di(naphtalen-1-yl)- N,N'-diphenyl-benzidine). In particular, the effects of in situ oxygen plasma pretreatment of the ITO surface on interface properties are examined in detail: Organic layer-thickness dependent Kelvin probe measurements revealed a good alignment of the ITO work function and the highest occupied electronic level of the organic material in all samples. In contrast, the electrical properties of hole-only and bipolar organic diodes depend strongly on the treatment of ITO prior to organic deposition. This dependence is more pronounced for diodes made of polycrystalline CuPc than for those of amorphous alpha-NPD layers. X-ray diffraction and atomic force microscopic (AFM) investigations of CuPc nucleation and growth evidenced a more pronounced texture of the polycrystalline film structure on the ITO substrate that was oxygen plasma treated prior to organic layer deposition. These findings suggest that the anisotropic electrical properties of CuPc crystallites, and their orientation with respect to the substrate, strongly affect the charge carrier injection and transport properties at the anode interface.}, language = {en} } @article{FrischSchubertPreisetal.2012, author = {Frisch, Johannes and Schubert, Marcel and Preis, Eduard and Rabe, J{\"u}rgen P. and Neher, Dieter and Scherf, Ullrich and Koch, Norbert}, title = {Full electronic structure across a polymer heterojunction solar cell}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c1jm14968g}, pages = {4418 -- 4424}, year = {2012}, abstract = {We correlate the morphology and energy level alignment of bilayer structures comprising the donor poly(3-hexylthiophene) (P3HT) and the acceptor polyfluorene copolymer poly(9,90dialklylfluorene-alt-4,7-bis(2,5-thiendiyl)-2,1,3-benzothiadiazole) (PFTBTT) with the performance of these bilayers in organic photovoltaic cells (OPVCs). The conducting polymer poly(ethylenedioxythiophene): poly (styrenesulfonate) (PEDT:PSS) was used as the bottom electrode and Ca as the top electrode. Ultraviolet photoelectron spectroscopy (UPS) revealed that notable interface dipoles occur at all interfaces across the OPVC structure, highlighting that vacuum level alignment cannot reliably be used to estimate the electronic properties for device design. Particularly the effective electrode work function values (after contact formation with the conjugated polymers) differ significantly from those of the pristine electrode materials. Chemical reactions between PEDT: PSS and P3HT on the one hand and Ca and PFTBTT on the other hand are identified as cause for the measured interface dipoles. The vacuum level shift between P3HT and PFTBTT is related to mutual energy level pinning at gap states. Annealing induced morphological changes at the P3HT/PFTBTT interface increased the efficiency of OPVCs, while the electronic structure was not affected by thermal treatment.}, language = {en} } @article{GhaniOpitzPingeletal.2015, author = {Ghani, Fatemeh and Opitz, Andreas and Pingel, Patrick and Heimel, Georg and Salzmann, Ingo and Frisch, Johannes and Neher, Dieter and Tsami, Argiri and Scherf, Ullrich and Koch, Norbert}, title = {Charge Transfer in and Conductivity of Molecularly Doped Thiophene-Based Copolymers}, series = {Journal of polymer science : B, Polymer physics}, volume = {53}, journal = {Journal of polymer science : B, Polymer physics}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23631}, pages = {58 -- 63}, year = {2015}, abstract = {The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground-state integer charge transfer and charge-transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge-transfer interactions between the common molecular p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane and a systematic series of thiophene-based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge-transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design.}, language = {en} } @article{HoermannZeiskeParketal.2019, author = {H{\"o}rmann, Ulrich and Zeiske, Stefan and Park, Soohyung and Schultz, Thorsten and Kickhoefel, Sebastian and Scherf, Ullrich and Blumstengel, Sylke and Koch, Norbert and Neher, Dieter}, title = {Direct observation of state-filling at hybrid tin oxide/organic interfaces}, series = {Applied physics letters}, volume = {114}, journal = {Applied physics letters}, number = {18}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5082704}, pages = {5}, year = {2019}, abstract = {Electroluminescence (EL) spectra of hybrid charge transfer states at metal oxide/organic type-II heterojunctions exhibit bias-induced spectral shifts. The reasons for this phenomenon have been discussed controversially and arguments for either electric field-induced effects or the filling of trap states at the oxide surface have been put forward. Here, we combine the results of EL and photovoltaic measurements to eliminate the unavoidable effect of the series resistance of inorganic and organic components on the total voltage drop across the hybrid device. For SnOx combined with the conjugated polymer [ladder type poly-(para-phenylene)], we find a one-to-one correspondence between the blue-shift of the EL peak and the increase of the quasi-Fermi level splitting at the hybrid heterojunction, which we unambiguously assign to state filling. Our data are resembled best by a model considering the combination of an exponential density of states with a doped semiconductor. Published under license by AIP Publishing.}, language = {en} } @article{HoermannZeiskePiersimonietal.2018, author = {H{\"o}rmann, Ulrich and Zeiske, Stefan and Piersimoni, Fortunato and Hoffmann, Lukas and Schlesinger, Raphael and Koch, Norbert and Riedl, Thomas and Andrienko, Denis and Neher, Dieter}, title = {Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces}, series = {Physical review : B, Condensed matter and materials physics}, volume = {98}, journal = {Physical review : B, Condensed matter and materials physics}, number = {15}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.98.155312}, pages = {9}, year = {2018}, abstract = {We investigate the bias dependence of the hybrid charge transfer state emission at planar heterojunctions between the metal oxide acceptor ZnO and three donor molecules. The electroluminescence peak energy linearly increases with the applied bias, saturating at high fields. Variation of the organic layer thickness and deliberate change of the ZnO conductivity through controlled photodoping allow us to confirm that this bias-induced spectral shift relates to the internal electric field in the organic layer rather than the filling of states at the hybrid interface. We show that existing continuum models overestimate the hole delocalization and propose a simple electrostatic model in which the linear and quadratic Stark effects are explained by the electrostatic interaction of a strongly polarizable molecular cation with its mirror image.}, language = {en} } @article{LangeBlakesleyFrischetal.2011, author = {Lange, Ilja and Blakesley, James C. and Frisch, Johannes and Vollmer, Antje and Koch, Norbert and Neher, Dieter}, title = {Band bending in conjugated polymer layers}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {21}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.216402}, pages = {4}, year = {2011}, abstract = {We use the Kelvin probe method to study the energy-level alignment of four conjugated polymers deposited on various electrodes. Band bending is observed in all polymers when the substrate work function exceeds critical values. Through modeling, we show that the band bending is explained by charge transfer from the electrodes into a small density of states that extends several hundred meV into the band gap. The energetic spread of these states is correlated with charge-carrier mobilities, suggesting that the same states also govern charge transport in the bulk of these polymers.}, language = {en} } @article{LuBlakesleyHimmelbergeretal.2013, author = {Lu, Guanghao and Blakesley, James C. and Himmelberger, Scott and Pingel, Patrick and Frisch, Johannes and Lieberwirth, Ingo and Salzmann, Ingo and Oehzelt, Martin and Di Pietro, Riccardo and Salleo, Alberto and Koch, Norbert and Neher, Dieter}, title = {Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors}, series = {Nature Communications}, volume = {4}, journal = {Nature Communications}, number = {1-2}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms2587}, pages = {8}, year = {2013}, abstract = {Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt\% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60.}, language = {en} } @article{LuDiPietroKoellnetal.2016, author = {Lu, Guanghao and Di Pietro, Riccardo and K{\"o}lln, Lisa Sophie and Nasrallah, Iyad and Zhou, Ling and Mollinger, Sonya and Himmelberger, Scott and Koch, Norbert and Salleo, Alberto and Neher, Dieter}, title = {Dual-Characteristic Transistors Based on Semiconducting Polymer Blends}, series = {Advanced electronic materials}, volume = {2}, journal = {Advanced electronic materials}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2199-160X}, doi = {10.1002/aelm.201600267}, pages = {2344 -- 2351}, year = {2016}, abstract = {A dual-characteristic polymer field-effect transistor has markedly different characteristics in low and high voltage operations. In the low-voltage range (<5 V) it shows sharp subthreshold slopes (0.3-0.4 V dec\&\#8722;1), using which a low-voltage inverter with gain 8 is realized, while high-voltage (>5 V) induces symmetric current with regard to drain and gate voltages, leading to discrete differential (trans) conductances.}, language = {en} }