@article{SchubertDolfenFrischetal.2012, author = {Schubert, Marcel and Dolfen, Daniel and Frisch, Johannes and Roland, Steffen and Steyrleuthner, Robert and Stiller, Burkhard and Chen, Zhihua and Scherf, Ullrich and Koch, Norbert and Facchetti, Antonio and Neher, Dieter}, title = {Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers}, series = {dvanced energy materials}, volume = {2}, journal = {dvanced energy materials}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201100601}, pages = {369 -- 380}, year = {2012}, abstract = {The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4\%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70\%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction.}, language = {en} } @article{FrischSchubertPreisetal.2012, author = {Frisch, Johannes and Schubert, Marcel and Preis, Eduard and Rabe, J{\"u}rgen P. and Neher, Dieter and Scherf, Ullrich and Koch, Norbert}, title = {Full electronic structure across a polymer heterojunction solar cell}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c1jm14968g}, pages = {4418 -- 4424}, year = {2012}, abstract = {We correlate the morphology and energy level alignment of bilayer structures comprising the donor poly(3-hexylthiophene) (P3HT) and the acceptor polyfluorene copolymer poly(9,90dialklylfluorene-alt-4,7-bis(2,5-thiendiyl)-2,1,3-benzothiadiazole) (PFTBTT) with the performance of these bilayers in organic photovoltaic cells (OPVCs). The conducting polymer poly(ethylenedioxythiophene): poly (styrenesulfonate) (PEDT:PSS) was used as the bottom electrode and Ca as the top electrode. Ultraviolet photoelectron spectroscopy (UPS) revealed that notable interface dipoles occur at all interfaces across the OPVC structure, highlighting that vacuum level alignment cannot reliably be used to estimate the electronic properties for device design. Particularly the effective electrode work function values (after contact formation with the conjugated polymers) differ significantly from those of the pristine electrode materials. Chemical reactions between PEDT: PSS and P3HT on the one hand and Ca and PFTBTT on the other hand are identified as cause for the measured interface dipoles. The vacuum level shift between P3HT and PFTBTT is related to mutual energy level pinning at gap states. Annealing induced morphological changes at the P3HT/PFTBTT interface increased the efficiency of OPVCs, while the electronic structure was not affected by thermal treatment.}, language = {en} } @article{GhaniOpitzPingeletal.2015, author = {Ghani, Fatemeh and Opitz, Andreas and Pingel, Patrick and Heimel, Georg and Salzmann, Ingo and Frisch, Johannes and Neher, Dieter and Tsami, Argiri and Scherf, Ullrich and Koch, Norbert}, title = {Charge Transfer in and Conductivity of Molecularly Doped Thiophene-Based Copolymers}, series = {Journal of polymer science : B, Polymer physics}, volume = {53}, journal = {Journal of polymer science : B, Polymer physics}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23631}, pages = {58 -- 63}, year = {2015}, abstract = {The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground-state integer charge transfer and charge-transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge-transfer interactions between the common molecular p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane and a systematic series of thiophene-based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge-transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design.}, language = {en} } @article{SchubertFrischAllardetal.2017, author = {Schubert, Marcel and Frisch, Johannes and Allard, Sybille and Preis, Eduard and Scherf, Ullrich and Koch, Norbert and Neher, Dieter}, title = {Tuning side chain and main chain order in a prototypical donor-acceptor copolymer}, series = {Elementary Processes in Organic Photovoltaics}, volume = {272}, journal = {Elementary Processes in Organic Photovoltaics}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-28338-8}, issn = {0065-3195}, doi = {10.1007/978-3-319-28338-8_10}, pages = {243 -- 265}, year = {2017}, abstract = {The recent development of donor-acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure-property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.}, language = {en} } @article{HoermannZeiskeParketal.2019, author = {H{\"o}rmann, Ulrich and Zeiske, Stefan and Park, Soohyung and Schultz, Thorsten and Kickhoefel, Sebastian and Scherf, Ullrich and Blumstengel, Sylke and Koch, Norbert and Neher, Dieter}, title = {Direct observation of state-filling at hybrid tin oxide/organic interfaces}, series = {Applied physics letters}, volume = {114}, journal = {Applied physics letters}, number = {18}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5082704}, pages = {5}, year = {2019}, abstract = {Electroluminescence (EL) spectra of hybrid charge transfer states at metal oxide/organic type-II heterojunctions exhibit bias-induced spectral shifts. The reasons for this phenomenon have been discussed controversially and arguments for either electric field-induced effects or the filling of trap states at the oxide surface have been put forward. Here, we combine the results of EL and photovoltaic measurements to eliminate the unavoidable effect of the series resistance of inorganic and organic components on the total voltage drop across the hybrid device. For SnOx combined with the conjugated polymer [ladder type poly-(para-phenylene)], we find a one-to-one correspondence between the blue-shift of the EL peak and the increase of the quasi-Fermi level splitting at the hybrid heterojunction, which we unambiguously assign to state filling. Our data are resembled best by a model considering the combination of an exponential density of states with a doped semiconductor. Published under license by AIP Publishing.}, language = {en} }