@article{KleinpeterKoch2021, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Dative or coordinative carbon-boron bond in boron trapped N-heterocyclic carbenes (NHCs)?}, series = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, volume = {80}, journal = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-4020}, doi = {10.1016/j.tet.2020.131787}, pages = {8}, year = {2021}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of isolated as well as B-C bond length varied model compounds (BR3 trapped NHCs) have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the present dative vs. coordinative bond character of the boron-carbon bond in the trapped NHCs. Results are confirmed by bond lengths and B-11/C-13 chemical shift variations in the BR3 trapped NHCs.}, language = {en} } @article{KleinpeterKoch2017, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic pi-electron delocalization?}, series = {Tetrahedron}, volume = {73}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.05.062}, pages = {4265 -- 4274}, year = {2017}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteraromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring pi-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Benzyne - an acetylene- or cumulene-like electronic structure?}, series = {Tetrahedron}, volume = {75}, journal = {Tetrahedron}, number = {33}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2019.07.011}, pages = {4663 -- 4668}, year = {2019}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of benzyne 1 and analogues (benzene 2, 1,2,3-cyclohexatriene 3, cyclohexen-3-yne 4, cyclohexen-4-yne 5, cyclohexyne 6) have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values could be employed to compare the diatropic ring current effects of benzene and benzyne, and, when compared with the spatial magnetic properties of the analogues, to answer the question whether the benzyne electronic structure is more acetylene- or cumulene-like, supported by structural data and delta(C-13)/ppm values. (C) 2019 Published by Elsevier Ltd.}, language = {en} } @article{KleinpeterKriigerKoch2015, author = {Kleinpeter, Erich and Kriiger, Stefanie and Koch, Andreas}, title = {Anisotropy Effect of Three-Membered Rings in H-1 NMR Spectra: Quantification by TSNMRS and Assignment of the Stereochemistry}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {119}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.5b03078}, pages = {4268 -- 4276}, year = {2015}, abstract = {The spatial magnetic properties (through Space NAIR shieldings, TSNMRSs) of cyclopropane; of the heteroanalogous oxirane, thiirane, and aziridine; and of various substituted dis-, and tris-cyclic analogues have been computed by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSSs) of various size and direction. The TSNMRS values, thus obtained, can be employed to visualize the anisotropy (ring current) effect of I the cyclopropane ring moiety. This approach has been employed to qualify and quantify substituent influences and contributions of appropriate ring heteroatoms O, NH, and S on the anisotropy (ring current) effect of three-mernbered ring moieties, and to assign the stereochemistry of mono-, bis-, and tris cyclic structures containing cyclopropane as a structural element. Characteristic examples are included.}, language = {en} } @article{ZborowskiKochKleinpeteretal.2014, author = {Zborowski, Krzysztof Kazimierz and Koch, Andreas and Kleinpeter, Erich and Proniewicz, Leonard Marian}, title = {Searching for aromatic celate rings. Oxygen versus Thio and Seleno Ligands}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {228}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {8}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2014-0528}, pages = {869 -- 878}, year = {2014}, abstract = {As a part of searching for fully aromatic chelate compounds, copper complexes of malondialdehyde as well as its sulfur and selenium derivatives were investigated using the DFT quantum chemical methods. Chelate complexes of both Cu(I) and Cu(II) ions wereconsidered. Aromaticity of the metal complexes studied were analyzed using NICS(0), NICS(1), PDI, I-ring, MCI, ICMCI and I-B aromaticity indices, and by TSNMRS visualizations of the spatial magnetic properties. It seems that partial aromaticityof studied chelates increases when oxygen atoms in malondialdehyde are replaced by sulfur and selenium.}, language = {en} } @article{KleinpeterMichaelisKoch2015, author = {Kleinpeter, Erich and Michaelis, Marcus and Koch, Andreas}, title = {Are para-nitro-pyridine N-oxides quinonoid or benzenoid? An answer given by spatial NICS (TSNMRS)}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {15}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.02.043}, pages = {2273 -- 2279}, year = {2015}, abstract = {The spatial magnetic properties (Through-Space NMR Shieldings-TSNMRS) of a number of substituted para-nitro-pyridine N-oxides have been computed, visualized as Iso-Chemical-Shielding-Surfaces (ICSS) of various size and direction, and were examined subject to the present quinonoid or benzenoid pi-relectron distribution of the six-membered ring. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BartaSzatmariFueloepetal.2016, author = {Barta, Petra and Szatmari, Istvan and Fueloep, Ferenc and Heydenreich, Matthias and Koch, Andreas and Kleinpeter, Erich}, title = {Synthesis and stereochemistry of new naphth[1,3]oxazino[3,2-a] benzazepine and naphth[1,3]oxazino[3,2-e]thienopyridine derivatives}, series = {Tetrahedron}, volume = {72}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2016.03.058}, pages = {2402 -- 2410}, year = {2016}, abstract = {Through the reactions of 1- or 2-naphthol and 4,5-dihydro-3H-benz[c]azepine or 6,7-dihydrothieno[3,2-c]pyridine, new aminonaphthol derivatives were prepared. The syntheses were extended by using N-containing naphthol analogues such as 5-hydroxyisoquinoline and 6-hydroxyquinoline. The ring closures of the novel bifunctional compounds were also achieved, resulting in new naphth[2,1-e][1,3]oxazines, naphth[1,2-e][1,3]oxazines, isoquinolino[5,6-e][1,3]oxazines and quinolino[5,6-e][1,3]oxazines. H-1 NMR spectra of the target heterocycles 16, 20 and 21 were sufficiently resolved to indentify the present stereochemistry; therefore, beside computed structures, spatial experimental (dipolar coupling-NOE) and computed (ring current effect of the naphthyl moiety-TSNMRS) NMR studies were employed. The studied heterocycles exist exclusively as S(14b),R(N), R(14b),S(N), and S(16b)S(N) isomers, respectively. The flexible moieties of the studied compounds prefer. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KleinpeterHeydenreichKochetal.2017, author = {Kleinpeter, Erich and Heydenreich, Matthias and Koch, Andreas and Krtitschka, Angela and Kr{\"u}ger, Tobias and Linker, Torsten}, title = {NMR spectroscopic conformational analysis of 4-methylene-cyclohexyl pivalateThe effect of sp(2) hybridization}, series = {Magnetic resonance in chemistry}, volume = {55}, journal = {Magnetic resonance in chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4630}, pages = {1073 -- 1078}, year = {2017}, abstract = {The conformational equilibrium of the axial/equatorial conformers of 4-methylene-cyclohexyl pivalate is studied by dynamic NMR spectroscopy in a methylene chloride/freon mixture. At 153K, the ring interconversion gets slow on the nuclear magnetic resonance timescale, the conformational equilibrium (-G degrees) can be examined, and the barrier to ring interconversion (G(\#)) can be determined. The structural influence of sp(2) hybridization on both G degrees and G(\#) of the cyclohexyl moiety can be quantified.}, language = {en} } @article{SzatmariBelasriHeydenreichetal.2019, author = {Szatmari, Istvan and Belasri, Khadija and Heydenreich, Matthias and Koch, Andreas and Kleinpeter, Erich and Fulop, Ferenc}, title = {Ortho-Quinone methide driven synthesis of new O,N- or N,N-Heterocycles}, series = {ChemistryOpen : including thesis treasury}, volume = {8}, journal = {ChemistryOpen : including thesis treasury}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.201900150}, pages = {961 -- 971}, year = {2019}, abstract = {To synthesize functionalized Mannich bases that can serve two different types of ortho-quinone methide (o-QM) intermediates, 2-naphthol and 6-hydroxyquinoline were reacted with salicylic aldehyde in the presence of morpholine. The Mannich bases that can form o-QM and aza-o-QM were also synthesized by mixing 2-naphthol, 2-nitrobenzaldehyde, and morpholine followed by reduction of the nitro group. The highly functionalized aminonaphthol derivatives were then tested in [4+2] cycloaddition with different cyclic imines. The reaction proved to be both regio- and diastereoselective. In all cases, only one reaction product was obtained. Detailed structural analyses of the new polyheterocycles as well as conformational studies including DFT modelling were performed. The relative stability of o-QMs/aza-o-QM were also calculated, and the regioselectivity of the reactions could be explained only when the cycloaddition started from aminodiol 4. It was summarized that starting from diaminonaphthol 25, the regioselectivity of the reaction is driven by the higher nucleophilicity of the amino group compared with the hydroxy group. 12H-benzo[a]xanthen-12-one (11), formed via o-QM formation, was isolated as a side product. The proton NMR spectrum of 11 proved to be very unique from NMR point of view. The reason for the extreme low-field position of proton H-1 could be accounted for by theoretical calculation of structure and spatial magnetic properties of the compound in combination of ring current effects of the aromatic moieties and steric compression within the heavily hindered H(1)-C(1)-C(12b)-C(12a)-C(12)=O structural fragment.}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Benzenium Ion}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {123}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.9b03121}, pages = {4443 -- 4451}, year = {2019}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of the benzenium cation (C6H7+) 1 and of +/- I/M-substituted analogues C6H6X+ 3-8 [X = -Me, -CF3, -NH2, -NO2, -NO, -SiH3] have been calculated using the gauge-independent atomic orbital perturbation method employing the nucleus-independent chemical shift concept, and iso-chemical-shielding surfaces of various sizes and directions have been observed. The TSNMRS values were employed to compare the spatial magnetic properties (TSNMRS) of benzene and the benzenium ion 1 and then further compared with analogues 3-8, to answer the question whether the electronic structures of 1 and 3-8 are still similar to those of aromatic species or somewhat similar to the antiaromatic cyclopentadienyl cation 2, supported by structural data and delta(C-13)/ppm values.}, language = {en} } @article{KleinpeterKoch2018, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Stable Carbenes or Betaines?}, series = {European journal of organic chemistry}, volume = {2018}, journal = {European journal of organic chemistry}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201800462}, pages = {3114 -- 3121}, year = {2018}, abstract = {The anisotropy effect in H-1 NMR spectroscopy can be readily employed to indicate the position of carbene/betaine mesomeric equilibria. NR2 substituted carbene/betaines tend to adopt betaine structures, whereas in the absence of NR2 substituents, the betaine structures cannot stabilise the structure through both -donation effects of the NMe2 groups and the electronegativity of the nitrogen atoms, and the corresponding carbene-like structures are preferred. These conclusions are supported by calculated bond orders and (C-13)/ppm values. The spatial magnetic properties of isonitriles and carbon monoxide, which can be counted as stable carbenes or, at least, as carbene-analogues, also exist as stable betaine structures, which is again supported by structural and magnetic properties.}, language = {en} } @article{KleinpeterKoch2021, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Quantification of sigma-acceptor and pi-donor stabilization in O, S and Hal analogues of N-heterocyclic carbenes (NHCs) on the magnetic criterion}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {125}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {33}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.1c05257}, pages = {7235 -- 7245}, year = {2021}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of stable O, S and Hal analogues of N-heterocyclic carbenes (NHCs) have been calculated using the GIAO perturbation method employing the nucleus-independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSSs) of various sizes and directions. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the position of the present mesomeric equilibria (carbenes <-> ylides). The results are confirmed by geometry (bond angles and bond lengths), IR spectra, UV spectra, and C-13 chemical shifts of the electron-deficient carbon centers.}, language = {en} }