@phdthesis{Koch2001, author = {Koch, Andreas}, title = {Quantenchemische Untersuchungen von Tautomeriegleichgewichten und von Rotationsbarrieren um partielle C,N- Doppelbindungen}, pages = {115 S.}, year = {2001}, language = {de} } @article{KalliesKochMitzner1997, author = {Kallies, Bernd and Koch, Andreas and Mitzner, Rolf}, title = {Competitive resonance at the carbonyl group as visualized by the natural bond orbital analysis}, year = {1997}, language = {en} } @article{MuivaMutisyaMachariaHeydenreichetal.2014, author = {Muiva-Mutisya, Lois and Macharia, Bernard and Heydenreich, Matthias and Koch, Andreas and Akala, Hoseah M. and Derese, Solomon and Omosa, Leonidah K. and Yusuf, Amir O. and Kamau, Edwin and Yenesew, Abiy}, title = {6 alpha-Hydroxy-alpha-toxicarol and (+)-tephrodin with antiplasmodial activities from Tephrosia species}, series = {Phytochemistry letters}, volume = {10}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.09.002}, pages = {179 -- 183}, year = {2014}, abstract = {The CH2Cl2/MeOH (1: 1) extract of the roots of Tephrosia villosa showed good antiplasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 3.1 +/- 0.4 and 1.3 +/- 0.3 mu g/mL, respectively. Chromatographic separation of the extract yielded a new rotenoid, 6 alpha-hydroxy-alpha-toxicarol, along with five known rotenoids, (rotenone, deguelin, sumatrol, 12 alpha-hydroxy-alpha-toxicarol and villosinol). Similar treatment of the extract of the stem of Tephrosia purpurea (IC50 = 4.1 +/- 0.4 and 1.9 +/- 0.2 mu g/mL against D6 and W2 strains of P. falciparum, respectively) yielded a new flavone having a unique substituent at C-7/C-8 [trivial name (+)-tephrodin], along with the known flavonoids tachrosin, obovatin methyl ether and derrone. The relative configuration and the most stable conformation in (+)-tephrodin was determined by NMR and theoretical energy calculations. The rotenoids and flavones tested showed good to moderate antiplasmodial activities (IC50 = 9 +/- 23 mu M). Whereas the cytotoxicity of rotenoids is known, the flavones (+)-tephrodin and tachrosin did not show significant cytotoxicity (IC50 > 100 mu M;) against mammalian African monkey kidney (vero) and human larynx carcinoma (HEp2) cell lines. (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{MuivaMutisyaAtilawHeydenreichetal.2018, author = {Muiva-Mutisya, Lois M. and Atilaw, Yoseph and Heydenreich, Matthias and Koch, Andreas and Akala, Hoseah M. and Cheruiyot, Agnes C. and Brown, Matthew L. and Irungu, Beatrice and Okalebo, Faith A. and Derese, Solomon and Mutai, Charles and Yenesew, Abiy}, title = {Antiplasmodial prenylated flavanonols from Tephrosia subtriflora}, series = {Natural Product Research}, volume = {32}, journal = {Natural Product Research}, number = {12}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1478-6419}, doi = {10.1080/14786419.2017.1353510}, pages = {1407 -- 1414}, year = {2018}, abstract = {The CH2Cl2/MeOH (1:1) extract of the aerial parts of Tephrosia subtriflora afforded a new flavanonol, named subtriflavanonol (1), along with the known flavanone spinoflavanone B, and the known flavanonols MS-II (2) and mundulinol. The structures were elucidated by the use of NMR spectroscopy and mass spectrometry. The absolute configuration of the flavanonols was determined based on quantum chemical ECD calculations. In the antiplasmodial assay, compound 2 showed the highest activity against chloroquine-sensitive Plasmodiumfalciparum reference clones (D6 and 3D7), artemisinin-sensitive isolate (F32-TEM) as well as field isolate (KSM 009) with IC50 values 1.4-4.6M without significant cytotoxicity against Vero and HEp2 cell lines (IC50>100M). The new compound (1) showed weak antiplasmodial activity, IC50 12.5-24.2M, but also showed selective anticancer activity against HEp2 cell line (CC50 16.9M). [GRAPHICS] .}, language = {en} } @article{DeyouMarcoHeydenreichetal.2017, author = {Deyou, Tsegaye and Marco, Makungu and Heydenreich, Matthias and Pan, Fangfang and Gruhonjic, Amra and Fitzpatrick, Paul A. and Koch, Andreas and Derese, Solomon and Pelletier, Jerry and Rissanen, Kari and Yenesew, Abiy and Erdelyi, Mate}, title = {Isoflavones and Rotenoids from the Leaves of Millettia oblata ssp teitensis}, series = {Journal of natural products}, volume = {80}, journal = {Journal of natural products}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.7b00255}, pages = {2060 -- 2066}, year = {2017}, abstract = {A new isoflavone, 8-prenylmilldrone (1), and four new rotenoids, oblarotenoids A-D (2-5), along with nine known compounds (6-14), were isolated from the CH2Cl2/CH3OH (1:1) extract of the leaves of Millettia oblata ssp. teitensis by chromatographic separation. The purified compounds were identified by NMR spectroscopic and mass spectrometric analyses, whereas the absolute configurations of the rotenoids were established on the basis of chiroptical data and in some cases by single-crystal X-ray crystallography. Maximaisoflavone J (11) and oblarotenoid C (4) showed weak activity against the human breast cancer cell line MDA-MB-231 with IC50 values of 33.3 and 93.8 mu M, respectively.}, language = {en} } @article{KleinpeterKoch2012, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Spatial magnetic properties subject to lone pair and pi electron delocalization in benzenoid and quinoid structures : are quinoid tautomers really nonaromatic?}, issn = {1551-7004}, year = {2012}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of benzenoid and quinoid tautomeric structures such as benzodifurantrione and phenazine-type molecules have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept of Paul von Rague Schleyer and visualized as iso- chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the partial aromaticity of the studied compounds. In the case of the surprisingly more stable quinoid tautomers, the aromaticity-synonymous with stability due to the conjugation of p electrons and lone pairs-was not found to be particularly reduced.}, language = {en} } @article{KleinpeterKoch2012, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Spatial magnetic properties subject to lone pair and pi electron delocalization in benzenoid and quinoid structures are quinoid tautomers really nonaromatic?}, series = {Arkivoc : free online journal of organic chemistry}, journal = {Arkivoc : free online journal of organic chemistry}, publisher = {ARKAT}, address = {Gainesville}, issn = {1551-7004}, pages = {94 -- 108}, year = {2012}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of benzenoid and quinoid tautomeric structures such as benzodifurantrione and phenazine-type molecules have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept of Paul von Rague Schleyer and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the partial aromaticity of the studied compounds. In the case of the surprisingly more stable quinoid tautomers, the aromaticity-synonymous with stability due to the conjugation of p electrons and lone pairs-was not found to be particularly reduced.}, language = {en} } @article{KleinpeterKoch2018, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Paramagnetic ring current effects in anti-aromatic structures subject to substitution/annelation quantified by spatial magnetic properties (TSNMRS)}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {7}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.12.020}, pages = {700 -- 710}, year = {2018}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of the typically anti-aromatic cyclopentadienyl cation, cyclobutadiene, pentalene, s-indacene and of substituted/annelated analogues of the latter structures have been calculated using the CIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to visualize and quantify the dia(para) magnetic ring current effects in the studied compounds. The interplay of dia(para)magnetic ring current effects due to substitution/annelation caused by heavy exo-cyclic n,pi-electron delocalization can be qualified.}, language = {en} } @article{KochThomasKleinpeter1997, author = {Koch, Andreas and Thomas, Steffen and Kleinpeter, Erich}, title = {Ab-initio study, semi-empirical calculation and NMR spectroscopy of keto-enol tautomerism of triazolopyrimidines}, year = {1997}, language = {en} } @article{ShainyanUshakovMeshcheryakovetal.2007, author = {Shainyan, Bagrat A. and Ushakov, Igor A. and Meshcheryakov, Vladimir I. and Schilde, Uwe and Koch, Andreas and Kleinpeter, Erich}, title = {The stereodynamics of 3,5-bis(trifluoromethylsulfonyl)-1,3,5-oxadiazinane and 1,3,5- tris(trifluoromethylsulfonyl)-1,3,5-triazinane- an experimental and theoretical study}, doi = {10.1016/j.tet.2007.09.041}, year = {2007}, abstract = {Multinuclear dynamic NMR spectroscopy of 3,5-bis(trifluoromethylsulfonyl)-1,3,5-oxadiazinane (3) revealed the existence of two conformers with differently oriented CF3 groups with respect to the ring, and two dynamic processes: ring inversion and restricted rotation about the N-S bond. Two transition states connecting the two conformers and corresponding to clockwise and counterclockwise rotations about the N-S bond were found; the calculated activation barriers of about 12 kcal/mol are in excellent agreement with those measured experimentally for the related molecule 1,3,5-tris(trifluoromethylsulfonyl)-1,3,5-triazinane (1). X-ray analysis proved the existence of the symmetric isomer of 3, which is the minor isomer in solutions but the only one in the crystal due to packing effects. The normal Perlin effect (JCHax < JCHeq)observed for 2(6)-CH2 in 3, whereas the reversed Perlin effect was found for the 4-CH2 group in 3 as well as for all CH2 groups in 1 both experimentally and theoretically. The latter effect in compounds 1, 3, and 1- (methylsulfonyl)-3,5-bis(trifluoromethylsulfonyl)-1,3,5-triazinane (2) can be considered as a genuine reverse Perlin effect since larger values of 1JCH are observed for longer C-H bonds.}, language = {en} }