@article{GereckeSchumacherBerndzenetal.2019, author = {Gerecke, Christian and Schumacher, Fabian and Berndzen, Alide and Homann, Thomas and Kleuser, Burkhard}, title = {Vitamin C in combination with inhibition of mutant IDH1 synergistically activates TET enzymes and epigenetically modulates gene silencing in colon cancer cells}, series = {Epigenetics : the official journal of the DNA Methylation Society}, volume = {15}, journal = {Epigenetics : the official journal of the DNA Methylation Society}, number = {3}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1559-2294}, doi = {10.1080/15592294.2019.1666652}, pages = {307 -- 322}, year = {2019}, abstract = {Mutations in the enzyme isocitrate dehydrogenase 1 (IDH1) lead to metabolic alterations and a sustained formation of 2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite as it inhibits the activity of alpha-ketoglutarate-dependent dioxygenases such as ten-eleven translocation (TET) enzymes. Inhibitors of mutant IDH enzymes, like ML309, are currently tested in order to lower the levels of 2-HG. Vitamin C (VC) is an inducer of TET enzymes. To test a new therapeutic avenue of synergistic effects, the anti-neoplastic activity of inhibition of mutant IDH1 via ML309 in the presence of VC was investigated in the colon cancer cell line HCT116 IDH1(R132H/+) (harbouring a mutated IDH1 allele) and the parental cells HCT116 IDH1(+/+) (wild type IDH1). Measurement of the oncometabolite indicated a 56-fold higher content of 2-HG in mutated cells compared to wild type cells. A significant reduction of 2-HG was observed in mutated cells after treatment with ML 309, whereas VC produced only minimally changes of the oncometabolite. However, combinatorial treatment with both, ML309 and VC, in mutated cells induced pronounced reduction of 2-HG leading to levels comparable to those in wild type cells. The decreased level of 2-HG in mutated cells after combinatorial treatment was accompanied by an enhanced global DNA hydroxymethylation and an increased gene expression of certain tumour suppressors. Moreover, mutated cells showed an increased percentage of apoptotic cells after treatment with non-cytotoxic concentrations of ML309 and VC. These results suggest that combinatorial therapy is of interest for further investigation to rescue TET activity and treatment of IDH1/2 mutated cancers.}, language = {en} } @article{SeitzSchumacherBakeretal.2019, author = {Seitz, Aaron P. and Schumacher, Fabian and Baker, Jennifer and Soddemann, Matthias and Wilker, Barbara and Caldwell, Charles C. and Gobble, Ryan M. and Kamler, Markus and Becker, Katrin Anne and Beck, Sascha and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich}, title = {Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia}, series = {Journal of molecular medicine}, volume = {97}, journal = {Journal of molecular medicine}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {0946-2716}, doi = {10.1007/s00109-019-01800-1}, pages = {1195 -- 1211}, year = {2019}, abstract = {Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP.Key messagesNovel dip-coating method to coat plastic surfaces with lipids.Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface.Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms.Sphingosine coatings of endotracheal tubes induce killing of pathogens.Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia.}, language = {en} } @article{KachlerBailerHeimetal.2017, author = {Kachler, Katerina and Bailer, Maximilian and Heim, Lisanne and Schumacher, Fabian and Reichel, Martin and Holzinger, Corinna D. and Trump, Sonja and Mittler, Susanne and Monti, Juliana and Trufa, Denis I. and Rieker, Ralf J. and Hartmann, Arndt and Sirbu, Horia and Kleuser, Burkhard and Kornhuber, Johannes and Finotto, Susetta}, title = {Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma}, series = {Cancer research}, volume = {77}, journal = {Cancer research}, number = {21}, publisher = {American Association for Cancer Research}, address = {Philadelphia}, issn = {0008-5472}, doi = {10.1158/0008-5472.CAN-16-3313}, pages = {5963 -- 5976}, year = {2017}, abstract = {The lipid hydrolase enzyme acid sphingomyelinase (ASM) is required for the conversion of the lipid cell membrane component sphingomyelin into ceramide. In cancer cells, ASM-mediated ceramide production is important for apoptosis, cell proliferation, and immune modulation, highlighting ASM as a potential multimodal therapeutic target. In this study, we demonstrate elevated ASM activity in the lung tumor environment and blood serum of patients with non-small cell lung cancer (NSCLC). RNAi-mediated attenuation of SMPD1 in human NSCLC cells rendered them resistant to serum starvation-induced apoptosis. In a murine model of lung adenocarcinoma, ASM deficiency reduced tumor development in a manner associated with significant enhancement of Th1-mediated and cytotoxic T-cell-mediated antitumor immunity. Our findings indicate that targeting ASM in NSCLC can act by tumor cell-intrinsic and-extrinsic mechanisms to suppress tumor cell growth, most notably by enabling an effective antitumor immune response by the host. (C) 2017 AACR.}, language = {en} } @article{GutbierSchoenrockEhrleretal.2018, author = {Gutbier, Birgitt and Sch{\"o}nrock, Stefanie M. and Ehrler, Carolin and Haberberger, Rainer and Dietert, Kristina and Gruber, Achim D. and Kummer, Wolfgang and Michalick, Laura and Kuebler, Wolfgang M. and Hocke, Andreas C. and Szymanski, Kolja and Letsiou, Eleftheria and L{\"u}th, Anja and Schumacher, Fabian and Kleuser, Burkhard and Mitchell, Timothy J. and Bertrams, Wilhelm and Schmeck, Bernd and Treue, Denise and Klauschen, Frederick and Bauer, Torsten T. and T{\"o}nnies, Mario and Weissmann, Norbert and Hippenstiel, Stefan and Suttorp, Norbert and Witzenrath, Martin}, title = {Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2}, series = {Critical care medicine}, volume = {46}, journal = {Critical care medicine}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, organization = {CAPNETZ Study Grp}, issn = {0090-3493}, doi = {10.1097/CCM.0000000000002916}, pages = {e258 -- e267}, year = {2018}, abstract = {Objectives: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. Design: Controlled, in vitro, ex vivo, and in vivo laboratory study. Subjects: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. Interventions: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. Measurements and Main Results: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1(-/-) mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. Conclusions: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury.}, language = {en} } @article{BalzusSahleHoenzkeetal.2017, author = {Balzus, Benjamin and Sahle, Fitsum Feleke and H{\"o}nzke, Stefan and Gerecke, Christian and Schumacher, Fabian and Hedtrich, Sarah and Kleuser, Burkhard and Bodmeier, Roland}, title = {Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium}, series = {European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology}, volume = {115}, journal = {European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2017.02.001}, pages = {122 -- 130}, year = {2017}, abstract = {Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3-0.7\%) than ethyl cellulose nanoparticles (1.4-2.2\%). By blending the two polymers (1:1), small (105 nm), positively charged (+37 mV) nanoparticles with sufficient dexamethasone loading (1.3\%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness.}, language = {en} } @article{PastukhovSchwalmZangemeisterWittkeetal.2014, author = {Pastukhov, Oleksandr and Schwalm, Stephanie and Zangemeister-Wittke, Uwe and Fabbro, Doriano and Bornancin, Frederic and Japtok, Lukasz and Kleuser, Burkhard and Pfeilschifter, Josef and Huwiler, Andrea}, title = {The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death}, series = {British journal of pharmacology : journal of The British Pharmacological Society}, volume = {171}, journal = {British journal of pharmacology : journal of The British Pharmacological Society}, number = {24}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0007-1188}, doi = {10.1111/bph.12886}, pages = {5829 -- 5844}, year = {2014}, abstract = {Background and PurposeCeramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental ApproachThe breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key ResultsIn both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and ImplicationsOur data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.}, language = {en} } @article{JaptokSchaperBaeumeretal.2012, author = {Japtok, Lukasz and Schaper, Katrin and B{\"a}umer, Wolfgang and Radeke, Heinfried H. and Jeong, Se Kyoo and Kleuser, Burkhard}, title = {Sphingosine 1-Phosphate Modulates Antigen Capture by Murine Langerhans Cells via the S1P(2) Receptor Subtype}, series = {PLOS ONE}, volume = {7}, journal = {PLOS ONE}, number = {11}, publisher = {PUBLIC LIBRARY SCIENCE}, address = {SAN FRANCISCO}, issn = {1932-6203}, doi = {10.1371/journal.pone.0049427}, pages = {11}, year = {2012}, abstract = {Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P(2) receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P(2) not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions. Citation: Japtok L, Schaper K, Baumer W, Radeke HH, Jeong SK, et al. (2012) Sphingosine 1-Phosphate Modulates Antigen Capture by Murine Langerhans Cells via the S1P(2) Receptor Subtype. PLoS ONE 7(11): e49427. doi:10.1371/journal.pone.0049427}, language = {en} } @article{SchaperDickhautJaptoketal.2013, author = {Schaper, Katrin and Dickhaut, Jeannette and Japtok, Lukasz and Kietzmann, Manfred and Mischke, Reinhard and Kleuser, Burkhard and B{\"a}umer, Wolfgang}, title = {Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis}, series = {Journal of dermatological scienc}, volume = {71}, journal = {Journal of dermatological scienc}, number = {1}, publisher = {Elsevier}, address = {Clare}, issn = {0923-1811}, doi = {10.1016/j.jdermsci.2013.03.006}, pages = {29 -- 36}, year = {2013}, abstract = {Background: It has been indicated that the sphingolipid sphingosine-1-phosphate (SIP) restrains the ability of dendritic cells to migrate to lymph nodes. Furthermore SIP has been demonstrated to inhibit cell growth in human keratinocytes. However, only little is known about the effect of S1P in hyperproliferative and inflammatory in vivo models. Objective: In this study, locally acting SIP was explored in different experimental mouse models of psoriasis vulgaris. Methods: S1P and FTY720 were tested in the imiquimod-induced psoriasis mouse model, the mouse tail assay and a pilot study of the severe combined immunodeficiency mice (SCID). Results: In the imiquimod model the positive control diflorasone diacetate and S1P, but not FTY720 reduced the imiquimod-induced epidermal hyperproliferation of the ear skin. This effect was confirmed in the SCID model, where S1P treated skin from patients suffering from psoriasis showed a decrease in epidermal thickness compared to vehicle. In the imiquimod model, there was also significant inhibition of ear swelling and a moderate reduction of inflammatory cell influx and oedema formation in ear skin by SIP treatment. The inflammatory response on the back skin was, however, only reduced by diflorasone diacetate. In the mouse tail assay, the influence of S1P and FTY720 in stratum granulosum formation was tested compared to the positive control calcipotriol. Whereas topical administration of calcipotriol led to a low but significant increase of stratum granulosum, S1P and FTY720 lacked such an effect. Conclusion: Taken together, these results imply that topical administration of SIP might be a new option for the treatment of mild to moderate psoriasis lesions.}, language = {en} } @article{PewznerJungTabazavarehGrassmeetal.2014, author = {Pewzner-Jung, Yael and Tabazavareh, Shaghayegh Tavakoli and Grassme, Heike and Becker, Katrin Anne and Japtok, Lukasz and Steinmann, Joerg and Joseph, Tammar and Lang, Stephan and Tuemmler, Burkhard and Schuchman, Edward H. and Lentsch, Alex B. and Kleuser, Burkhard and Edwards, Michael J. and Futerman, Anthony H. and Gulbins, Erich}, title = {Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa}, series = {EMBO molecular medicine}, volume = {6}, journal = {EMBO molecular medicine}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-4676}, doi = {10.15252/emmm.201404075}, pages = {1205 -- 1214}, year = {2014}, abstract = {Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P.aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P.aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection.}, language = {en} } @article{FayyazHenkelJaptoketal.2014, author = {Fayyaz, Susann and Henkel, Janin and Japtok, Lukasz and Kr{\"a}mer, Stephanie and Damm, Georg and Seehofer, Daniel and P{\"u}schel, Gerhard Paul and Kleuser, Burkhard}, title = {Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P(2) receptor subtype}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {57}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-013-3123-6}, pages = {373 -- 382}, year = {2014}, abstract = {Enhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance. The incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice. Palmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P(2) receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P(2), was not able to inhibit insulin signalling. These data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P(2) receptor to impair insulin signalling. In particular, S1P(2) inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance.}, language = {en} }