@article{SicKrausMadletal.2014, author = {Sic, Heiko and Kraus, Helene and Madl, Josef and Flittner, Karl-Andreas and von Muenchow, Audrey Lilly and Pieper, Kathrin and Rizzi, Marta and Kienzler, Anne-Kathrin and Ayata, Korcan and Rauer, Sebastian and Kleuser, Burkhard and Salzer, Ulrich and Burger, Meike and Zirlik, Katja and Lougaris, Vassilios and Plebani, Alessandro and Roemer, Winfried and Loeffler, Christoph and Scaramuzza, Samantha and Villa, Anna and Noguchi, Emiko and Grimbacher, Bodo and Eibel, Hermann}, title = {Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis}, series = {The journal of allergy and clinical immunology}, volume = {134}, journal = {The journal of allergy and clinical immunology}, number = {2}, publisher = {Elsevier}, address = {New York}, issn = {0091-6749}, doi = {10.1016/j.jaci.2014.01.037}, pages = {420 -- +}, year = {2014}, abstract = {Background: Five different G protein-coupled sphingosine-1-phosphate (S1P) receptors (S1P1-S1P5) regulate a variety of physiologic and pathophysiologic processes, including lymphocyte circulation, multiple sclerosis (MS), and cancer. Although B-lymphocyte circulation plays an important role in these processes and is essential for normal immune responses, little is known about S1P receptors in human B cells. Objective: To explore their function and signaling, we studied B-cell lines and primary B cells from control subjects, patients with leukemia, patients with S1P receptor inhibitor-treated MS, and patients with primary immunodeficiencies. Methods: S1P receptor expression was analyzed by using multicolor immunofluorescence microscopy and quantitative PCR. Transwell assays were used to study cell migration. S1P receptor internalization was visualized by means of time-lapse imaging with fluorescent S1P receptor fusion proteins expressed by using lentiviral gene transfer. B-lymphocyte subsets were characterized by means of flow cytometry and immunofluorescence microscopy. Results: Showing that different B-cell populations express different combinations of S1P receptors, we found that S1P1 promotes migration, whereas S1P4 modulates and S1P2 inhibits S1P1 signals. Expression of CD69 in activated B lymphocytes and B cells from patients with chronic lymphocytic leukemia inhibited S1P-induced migration. Studying B-cell lines, normal B lymphocytes, and B cells from patients with primary immunodeficiencies, we identified Bruton tyrosine kinase, beta-arrestin 2, LPS-responsive beige-like anchor protein, dedicator of cytokinesis 8, and Wiskott-Aldrich syndrome protein as critical signaling components downstream of S1P1. Conclusion: Thus S1P receptor signaling regulates human B-cell circulation and might be a factor contributing to the pathology of MS, chronic lymphocytic leukemia, and primary immunodeficiencies.}, language = {en} } @article{SchaperDickhautJaptoketal.2013, author = {Schaper, Katrin and Dickhaut, Jeannette and Japtok, Lukasz and Kietzmann, Manfred and Mischke, Reinhard and Kleuser, Burkhard and B{\"a}umer, Wolfgang}, title = {Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis}, series = {Journal of dermatological scienc}, volume = {71}, journal = {Journal of dermatological scienc}, number = {1}, publisher = {Elsevier}, address = {Clare}, issn = {0923-1811}, doi = {10.1016/j.jdermsci.2013.03.006}, pages = {29 -- 36}, year = {2013}, abstract = {Background: It has been indicated that the sphingolipid sphingosine-1-phosphate (SIP) restrains the ability of dendritic cells to migrate to lymph nodes. Furthermore SIP has been demonstrated to inhibit cell growth in human keratinocytes. However, only little is known about the effect of S1P in hyperproliferative and inflammatory in vivo models. Objective: In this study, locally acting SIP was explored in different experimental mouse models of psoriasis vulgaris. Methods: S1P and FTY720 were tested in the imiquimod-induced psoriasis mouse model, the mouse tail assay and a pilot study of the severe combined immunodeficiency mice (SCID). Results: In the imiquimod model the positive control diflorasone diacetate and S1P, but not FTY720 reduced the imiquimod-induced epidermal hyperproliferation of the ear skin. This effect was confirmed in the SCID model, where S1P treated skin from patients suffering from psoriasis showed a decrease in epidermal thickness compared to vehicle. In the imiquimod model, there was also significant inhibition of ear swelling and a moderate reduction of inflammatory cell influx and oedema formation in ear skin by SIP treatment. The inflammatory response on the back skin was, however, only reduced by diflorasone diacetate. In the mouse tail assay, the influence of S1P and FTY720 in stratum granulosum formation was tested compared to the positive control calcipotriol. Whereas topical administration of calcipotriol led to a low but significant increase of stratum granulosum, S1P and FTY720 lacked such an effect. Conclusion: Taken together, these results imply that topical administration of SIP might be a new option for the treatment of mild to moderate psoriasis lesions.}, language = {en} } @article{GutbierSchoenrockEhrleretal.2018, author = {Gutbier, Birgitt and Sch{\"o}nrock, Stefanie M. and Ehrler, Carolin and Haberberger, Rainer and Dietert, Kristina and Gruber, Achim D. and Kummer, Wolfgang and Michalick, Laura and Kuebler, Wolfgang M. and Hocke, Andreas C. and Szymanski, Kolja and Letsiou, Eleftheria and L{\"u}th, Anja and Schumacher, Fabian and Kleuser, Burkhard and Mitchell, Timothy J. and Bertrams, Wilhelm and Schmeck, Bernd and Treue, Denise and Klauschen, Frederick and Bauer, Torsten T. and T{\"o}nnies, Mario and Weissmann, Norbert and Hippenstiel, Stefan and Suttorp, Norbert and Witzenrath, Martin}, title = {Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2}, series = {Critical care medicine}, volume = {46}, journal = {Critical care medicine}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, organization = {CAPNETZ Study Grp}, issn = {0090-3493}, doi = {10.1097/CCM.0000000000002916}, pages = {e258 -- e267}, year = {2018}, abstract = {Objectives: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. Design: Controlled, in vitro, ex vivo, and in vivo laboratory study. Subjects: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. Interventions: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. Measurements and Main Results: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1(-/-) mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. Conclusions: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury.}, language = {en} } @article{SchmitzPotteckSchueppeletal.2012, author = {Schmitz, Elisabeth I. and Potteck, Henrik and Sch{\"u}ppel, Melanie and Manggau, Marianti and Wahydin, Elly and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P(3)}, series = {Molecular and cellular biochemistry : an international journal for chemical biology in health and disease}, volume = {371}, journal = {Molecular and cellular biochemistry : an international journal for chemical biology in health and disease}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0300-8177}, doi = {10.1007/s11010-012-1433-5}, pages = {165 -- 176}, year = {2012}, abstract = {Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NOaEuro cent) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NOaEuro cent-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NOaEuro cent. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NOaEuro cent. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NOaEuro cent formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.}, language = {en} } @article{JaptokSchaperBaeumeretal.2012, author = {Japtok, Lukasz and Schaper, Katrin and B{\"a}umer, Wolfgang and Radeke, Heinfried H. and Jeong, Se Kyoo and Kleuser, Burkhard}, title = {Sphingosine 1-Phosphate Modulates Antigen Capture by Murine Langerhans Cells via the S1P(2) Receptor Subtype}, series = {PLOS ONE}, volume = {7}, journal = {PLOS ONE}, number = {11}, publisher = {PUBLIC LIBRARY SCIENCE}, address = {SAN FRANCISCO}, issn = {1932-6203}, doi = {10.1371/journal.pone.0049427}, pages = {11}, year = {2012}, abstract = {Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P(2) receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P(2) not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions. Citation: Japtok L, Schaper K, Baumer W, Radeke HH, Jeong SK, et al. (2012) Sphingosine 1-Phosphate Modulates Antigen Capture by Murine Langerhans Cells via the S1P(2) Receptor Subtype. PLoS ONE 7(11): e49427. doi:10.1371/journal.pone.0049427}, language = {en} } @article{WiggerSchumacherSchneiderSchauliesetal.2021, author = {Wigger, Dominik and Schumacher, Fabian and Schneider-Schaulies, Sibylle and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate metabolism and insulin signaling}, series = {Cellular signalling}, volume = {82}, journal = {Cellular signalling}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0898-6568}, doi = {10.1016/j.cellsig.2021.109959}, pages = {16}, year = {2021}, abstract = {Insulin is the main anabolic hormone secreted by 13-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic 13-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.}, language = {en} } @article{JaptokSchmitzFayyazetal.2015, author = {Japtok, Lukasz and Schmitz, Elisabeth I. and Fayyaz, Susann and Kr{\"a}mer, Stephanie and Hsu, Leigh J. and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate counteracts insulin signaling in pancreatic beta-cells via the sphingosine 1-phosphate receptor subtype 2}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {29}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {8}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.14-263194}, pages = {3357 -- 3369}, year = {2015}, abstract = {Glucolipotoxic stress has been identified as a key player in the progression of pancreatic beta-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic beta-cells but also regulate beta-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in beta-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P(2)) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P(2) axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by beta-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P(2), the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued beta-cell damage clearly indicating an important role of the S1P(2) in beta-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish beta-cell dysfunction and the development of T2D.}, language = {en} } @article{BarceloCoblijnLauraMartindeAlmeidaetal.2011, author = {Barcelo-Coblijn, Gwendolyn and Laura Martin, Maria and de Almeida, Rodrigo F. M. and Antonia Noguera-Salva, Maria and Marcilla-Etxenike, Amaia and Guardiola-Serrano, Francisca and Lueth, Anja and Kleuser, Burkhard and Halver, John E. and Escriba, Pablo V.}, title = {Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {108}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {49}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1115484108}, pages = {19569 -- 19574}, year = {2011}, abstract = {The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30\%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.}, language = {en} } @article{PewznerJungTabazavarehGrassmeetal.2014, author = {Pewzner-Jung, Yael and Tabazavareh, Shaghayegh Tavakoli and Grassme, Heike and Becker, Katrin Anne and Japtok, Lukasz and Steinmann, Joerg and Joseph, Tammar and Lang, Stephan and Tuemmler, Burkhard and Schuchman, Edward H. and Lentsch, Alex B. and Kleuser, Burkhard and Edwards, Michael J. and Futerman, Anthony H. and Gulbins, Erich}, title = {Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa}, series = {EMBO molecular medicine}, volume = {6}, journal = {EMBO molecular medicine}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-4676}, doi = {10.15252/emmm.201404075}, pages = {1205 -- 1214}, year = {2014}, abstract = {Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P.aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P.aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection.}, language = {en} } @article{EdlichGereckeGiulbudagianetal.2016, author = {Edlich, Alexander and Gerecke, Christian and Giulbudagian, Michael and Neumann, Falko and Hedtrich, Sarah and Schaefer-Korting, Monika and Ma, Nan and Calderon, Marcelo and Kleuser, Burkhard}, title = {Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.12.016}, pages = {155 -- 163}, year = {2016}, abstract = {Engineered nanogels are of high value for a targeted and controlled transport of compounds due to the ability to change their chemical properties by external stimuli. As it has been indicated that nanogels possess a high ability to penetrate the stratum corneum, it cannot be excluded that nanogels interact with dermal dendritic cells, especially in diseased skin. In this study the potential crosstalk of the thermore-sponsive nanogels (tNGs) with the dendritic cells of the skin was investigated with the aim to determine the immunotoxicological properties of the nanogels. The investigated tNGs were made of dendritic polyglycerol (dPG) and poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)), as polymer conferring thermoresponsive properties. Although the tNGs were taken up, they displayed neither cytotoxic and genotoxic effects nor any induction of reactive oxygen species in the tested cells. Interestingly, specific uptake mechanisms of the tNGs by the dendritic cells were depending on the nanogels cloud point temperature (Tcp), which determines the phase transition of the nanoparticle. The study points to caveolae-mediated endocytosis as being the major tNGs uptake mechanism at 37 degrees C, which is above the Tcp of the tNGs. Remarkably, an additional uptake mechanism, beside caveolae-mediated endocytosis, was observed at 29 degrees C, which is the Tcp of the tNGs. At this temperature, which is characterized by two different states of the tNGs, macropinocytosis was involved as well. In summary, our study highlights the impact of thermoresponsivity on the cellular uptake mechanisms which has to be taken into account if the tNGs are used as a drug delivery system.}, language = {en} } @article{SpeckmannSchulzHilleretal.2017, author = {Speckmann, Bodo and Schulz, Sarah and Hiller, Franziska and Hesse, Deike and Schumacher, Fabian and Kleuser, Burkhard and Geisel, Juergen and Obeid, Rima and Grune, Tilman and Kipp, Anna Patricia}, title = {Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice}, series = {The journal of nutritional biochemistry}, volume = {48}, journal = {The journal of nutritional biochemistry}, publisher = {Elsevier}, address = {New York}, issn = {0955-2863}, doi = {10.1016/j.jnutbio.2017.07.002}, pages = {112 -- 119}, year = {2017}, abstract = {The average intake of the essential trace element selenium (Se) is below the recommendation in most European countries, possibly causing sub-optimal expression of selenoproteins. It is still unclear how a suboptimal Se status may affect health. To mimic this situation, mice were fed one of three physiologically relevant amounts of Se. We focused on the liver, the organ most sensitive to changes in the Se supply indicated by hepatic glutathione peroxidase activity. In addition, liver is the main organ for synthesis of methyl groups and glutathione via one-carbon metabolism. Accordingly, the impact of Se on global DNA methylation, methylation capacity, and gene expression was assessed. We observed higher global DNA methylation indicated by LINE1 methylation, and an increase of the methylation potential as indicated by higher S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio and by elevated mRNA expression of serine hydroxymethyltransferase in both or either of the Se groups. Furthermore, increasing the Se supply resulted in higher plasma concentrations of triglycerides. Hepatic expression of glycolytic and lipogenic genes revealed consistent Se dependent up-regulation of glucokinase. The sterol regulatory element-binding transcription factor 1 (Srebf1) was also up-regulated by Se. Both effects were confirmed in primary hepatocytes. In contrast to the overall Se-dependent increase of methylation capacity, the up-regulation of Srebf1 expression was paralleled by reduced local methylation of a specific CpG site within the Srebf1 gene. Thus, we provided evidence that Se-dependent effects on lipogenesis involve epigenetic mechanisms. (C) 2017 The Authors. Published by Elsevier Inc.}, language = {en} } @article{BoertleinSchumacherKleuseretal.2019, author = {B{\"o}rtlein, Charlene and Schumacher, Fabian and Kleuser, Burkhard and D{\"o}lken, Lars and Avota, Elita}, title = {Role of Neutral Sphingomyelinase-2 (NSM 2) in the Control of T Cell Plasma Membrane Lipid Composition and Cholesterol Homeostasis}, series = {Frontiers in cell and developmental biology}, volume = {7}, journal = {Frontiers in cell and developmental biology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00226}, pages = {16}, year = {2019}, abstract = {The activity of neutral sphingomyelinase-2 (NSM2) to catalyze the conversion of sphingomyelin (SM) to ceramide and phosphocholine at the cytosolic leaflet of plasma membrane (PM) is important in T cell receptor (TCR) signaling. We recently identified PKC zeta as a major NSM2 downstream effector which regulates microtubular polarization. It remained, however, unclear to what extent NSM2 activity affected overall composition of PM lipids and downstream effector lipids in antigen stimulated T cells. Here, we provide a detailed lipidomics analyses on PM fractions isolated from TCR stimulated wild type and NSM2 deficient (Delta NSM) Jurkat T cells. This revealed that in addition to that of sphingolipids, NSM2 depletion also affected concentrations of many other lipids. In particular, NSM2 ablation resulted in increase of lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamine (LPE) which both govern PM biophysical properties. Crucially, TCR dependent upregulation of the important T cell signaling lipid diacylglycerol (DAG), which is fundamental for activation of conventional and novel PKCs, was abolished in Delta NSM cells. Moreover, NSM2 activity was found to play an important role in PM cholesterol transport to the endoplasmic reticulum (ER) and production of cholesteryl esters (CE) there. Most importantly, CE accumulation was essential to sustain human T cell proliferation. Accordingly, inhibition of CE generating enzymes, the cholesterol acetyltransferases ACAT1/SOAT1 and ACAT2/SOAT2, impaired TCR driven expansion of both CD4(+) and CD8(+) T cells. In summary, our study reveals an important role of NSM2 in regulating T cell functions by its multiple effects on PM lipids and cholesterol homeostasis.}, language = {en} } @article{CarpinteiroBeckerJaptoketal.2015, author = {Carpinteiro, Alexander and Becker, Katrin Anne and Japtok, Lukasz and Hessler, Gabriele and Keitsch, Simone and Pozgajova, Miroslava and Schmid, Kurt W. and Adams, Constantin and M{\"u}ller, Stefan and Kleuser, Burkhard and Edwards, Michael J. and Grassme, Heike and Helfrich, Iris and Gulbins, Erich}, title = {Regulation of hematogenous tumor metastasis by acid sphingomyelinase}, series = {EMBO molecular medicine}, volume = {7}, journal = {EMBO molecular medicine}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-4676}, pages = {714 -- 734}, year = {2015}, abstract = {Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90\% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1(-/-) mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of 51 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C-16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing 1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis.}, language = {en} } @article{WanjikuYamamotoKlosseketal.2019, author = {Wanjiku, Barbara and Yamamoto, Kenji and Klossek, Andre and Schumacher, Fabian and Pischon, Hannah and Mundhenk, Lars and Rancan, Fiorenza and Judd, Martyna M. and Ahmed, Muniruddin and Zoschke, Christian and Kleuser, Burkhard and R{\"u}hl, Eckart and Sch{\"a}fer-Korting, Monika}, title = {Qualifying X-ray and Stimulated Raman Spectromicroscopy for Mapping Cutaneous Drug Penetration}, series = {Analytical chemistry}, volume = {91}, journal = {Analytical chemistry}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/acs.analchem.9b00519}, pages = {7208 -- 7214}, year = {2019}, abstract = {Research on topical drug delivery relies on reconstructed human skin (RHS) in addition to ex vivo human and animal skin, each with specific physiological features. Here, we compared the penetration of dexamethasone from an ethanolic hydroxyethyl cellulose gel into ex vivo human skin, murine skin, and RHS. For comprehensive insights into skin morphology and penetration enhancing mechanisms, scanning transmission X-ray microscopy (STXM), liquid chromatography tandem mass spectrometry (LC-MS/MS), and stimulated Raman spectromicroscopy (SRS) were combined. STXM offers high spatial resolution with label-free drug detection and is therefore sensitive to tissue damage. Despite differences in sample preparation and data analysis, the amounts of dexamethasone in RHS, detected and quantified by STXM and LC-MS/MS, were very similar and increased during the first 100 min of exposure. SRS revealed interactions between the gel and the stratum corneum or, more specifically, its protein and lipid structures. Similar to both types of ex vivo skin, higher protein-to-lipid ratios within the stratum corneum of RHS indicated reduced lipid amounts after 30 min of ethanol exposure. Extended ethanol exposure led to a continued reduction of lipids in the ex vivo matrixes, while protein integrity appeared to be compromised in RHS, which led to declining protein signals. In conclusion, LC-MS/MS proved the predictive capability of STXM for label-free drug detection. Combining STXM with SRS precisely dissected the penetration enhancing effects of ethanol. Further studies on topical drug delivery should consider the potential of these complementary techniques.}, language = {en} } @article{ZhangSaidWischkeetal.2017, author = {Zhang, Nan and Said, Andre and Wischke, Christian and Kral, Vivian and Brodwolf, Robert and Volz, Pierre and Boreham, Alexander and Gerecke, Christian and Li, Wenzhong and Neffe, Axel T. and Kleuser, Burkhard and Alexiev, Ulrike and Lendlein, Andreas and Sch{\"a}fer-Korting, Monika}, title = {Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.10.019}, pages = {66 -- 75}, year = {2017}, abstract = {Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1\% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.}, language = {en} } @article{HalilbasicFuerstHeidenetal.2020, author = {Halilbasic, Emina and Fuerst, Elisabeth and Heiden, Denise and Japtok, Lukasz and Diesner, Susanne C. and Trauner, Michael and Kulu, Askin and Jaksch, Peter and Hoetzenecker, Konrad and Kleuser, Burkhard and Kazemi-Shirazi, Lili and Untersmayr, Eva}, title = {Plasma levels of the bioactive sphingolipid metabolite S1P in adult cystic fibrosis patients}, series = {Nutrients}, volume = {12}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu12030765}, pages = {11}, year = {2020}, abstract = {Recent research has linked sphingolipid (SL) metabolism with cystic fibrosis transmembrane conductance regulator (CFTR) activity, affecting bioactive lipid mediator sphingosine-1-phosphate (S1P). We hypothesize that loss of CFTR function in cystic fibrosis (CF) patients influenced plasma S1P levels. Total and unbound plasma S1P levels were measured in 20 lung-transplanted adult CF patients and 20 healthy controls by mass spectrometry and enzyme-linked immunosorbent assay (ELISA). S1P levels were correlated with CFTR genotype, routine laboratory parameters, lung function and pathogen colonization, and clinical symptoms. Compared to controls, CF patients showed lower unbound plasma S1P, whereas total S1P levels did not differ. A positive correlation of total and unbound S1P levels was found in healthy controls, but not in CF patients. Higher unbound S1P levels were measured in Delta F508-homozygous compared to Delta F508-heterozygous CF patients (p = 0.038), accompanied by higher levels of HDL in Delta F508-heterozygous patients. Gastrointestinal symptoms were more common in Delta F508 heterozygotes compared to Delta F508 homozygotes. This is the first clinical study linking plasma S1P levels with CFTR function and clinical presentation in adult CF patients. Given the emerging role of immunonutrition in CF, our study might pave the way for using S1P as a novel biomarker and nutritional target in CF.}, language = {en} } @article{BeckmannKadowSchumacheretal.2018, author = {Beckmann, Nadine and Kadow, Stephanie and Schumacher, Fabian and Goethert, Joachim R. and Kesper, Stefanie and Draeger, Annette and Schulz-Schaeffer, Walter J. and Wang, Jiang and Becker, Jan U. and Kramer, Melanie and Kuehn, Claudine and Kleuser, Burkhard and Becker, Katrin Anne and Gulbins, Erich and Carpinteiro, Alexander}, title = {Pathological manifestations of Farber disease in a new mouse model}, series = {Biological chemistry}, volume = {399}, journal = {Biological chemistry}, number = {10}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2018-0170}, pages = {1183 -- 1202}, year = {2018}, abstract = {Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.}, language = {en} } @article{LotinunKivirantaMatsubaraetal.2013, author = {Lotinun, Sutada and Kiviranta, Riku and Matsubara, Takuma and Alzate, Jorge A. and Neff, Lynn and L{\"u}th, Anja and Koskivirta, Ilpo and Kleuser, Burkhard and Vacher, Jean and Vuorio, Eero and Horne, William C. and Baron, Roland}, title = {Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation}, series = {The journal of clinical investigation}, volume = {123}, journal = {The journal of clinical investigation}, number = {2}, publisher = {American Society for Clinical Investigation}, address = {Ann Arbor}, issn = {0021-9738}, doi = {10.1172/JCI64840}, pages = {666 -- 681}, year = {2013}, abstract = {Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-l-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P(1,3) receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P.}, language = {en} } @article{SchwiebsThomasKleuseretal.2017, author = {Schwiebs, Anja and Thomas, Dominique Jeanette and Kleuser, Burkhard and Pfeilschifter, Josef and Radeke, Heinfried H.}, title = {Nuclear translocation of SGPP-1 and decrease of SGPL-1 activity contribute to sphingolipid rheostat regulation of inflammatory dendritic cells}, series = {Mediators of inflammation}, journal = {Mediators of inflammation}, publisher = {Hindawi Publishing Corp.}, address = {London}, issn = {0962-9351}, doi = {10.1155/2017/5187368}, pages = {10}, year = {2017}, abstract = {A balanced sphingolipid rheostat is indispensable for dendritic cell function and survival and thus initiation of an immune response. Sphingolipid levels are dynamically maintained by the action of sphingolipid enzymes of which sphingosine kinases, S1P phosphatases (SGPP-1/2) and S1P lyase (SGPL-1), are pivotal in the balance of S1P and sphingosine levels. In this study, we present that SGPP-1 and SGPL-1 are regulated in inflammatory dendritic cells and contribute to S1P fate. TLR-dependent activation caused SGPL-1 protein downregulation with subsequent decrease of enzymatic activity by two-thirds. In parallel, confocal fluorescence microscopy revealed that endogenous SGPP-1 was expressed in nuclei of naive dendritic cells and was translocated into the cytoplasmatic compartment upon inflammatory stimulation resulting in dephosphorylation of S1P. Mass spectrometric determination showed that a part of the resulting sphingosine was released from the cell, increasing extracellular levels. Another route of diminishing intracellular S1P was possibly taken by its export via ATP-binding cassette transporter C1 which was upregulated in array analysis, while the S1P transporter, spinster homolog 2, was not relevant in dendritic cells. These investigations newly describe the sequential expression and localization of the endogenous S1P regulators SGPP-1 and SGPL-1 and highlight their contribution to the sphingolipid rheostat in inflammation.}, language = {en} } @article{ImeriFalleggerZivkovicetal.2014, author = {Imeri, Faik and Fallegger, Daniel and Zivkovic, Aleksandra and Schwalm, Stephanie and Enzmann, Gaby and Blankenbach, Kira and Heringdorf, Dagmar Meyer Zu and Homann, Thomas and Kleuser, Burkhard and Pfeilschifter, Josef and Engelhardt, Britta and Stark, Holger and Huwiler, Andrea}, title = {Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice}, series = {Neuropharmacology}, volume = {85}, journal = {Neuropharmacology}, publisher = {Elsevier}, address = {Oxford}, issn = {0028-3908}, doi = {10.1016/j.neuropharm.2014.05.012}, pages = {314 -- 327}, year = {2014}, abstract = {The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P(1) and S1P(3), but not S1P(2), receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNF alpha-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNF alpha-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{LuethNeuberKleuser2012, author = {L{\"u}th, Anja and Neuber, Corinna and Kleuser, Burkhard}, title = {Novel methods for the quantification of (2E)-hexadecenal by liquid chromatography with detection by either ESI QTOF tandem mass spectrometry or fluorescence measurement}, series = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, volume = {722}, journal = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-2670}, doi = {10.1016/j.aca.2012.01.063}, pages = {70 -- 79}, year = {2012}, abstract = {Sphingosine-1-phosphate lyase (SPL) is the only known enzyme that irreversibly cleaves sphingosine-1-phosphate (S1P) into phosphoethanolamine and (2E)-hexadecenal during the final step of sphingolipid catabolism. Because S1P is involved in a wide range of physiological and diseased processes, determining the activity of the degrading enzyme is of great interest. Therefore, we developed two procedures based on liquid chromatography (LC) for analysing (2E)-hexadecenal, which is one of the two S1P degradation products. After separation, two different quantification methods were performed, tandem mass spectrometry (MS) and fluorescence detection. However, (2E)-hexadecenal as a long-chain aldehyde is not ionisable by electrospray ionisation (ESI) for MS quantification and has an insufficient number of corresponding double bonds for fluorescence detection. Therefore, we investigated 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) as a derivatisation reagent. DAIH transforms the aldehyde into an ionisable and fluorescent analogue for quantitative analysis. Our conditions were optimised to obtain the outstanding limit of detection (LOD) of 1 fmol per sample (30 mu L) for LC-MS/MS and 0.75 pmol per sample (200 mu l) for LC determination with fluorescence detection. We developed an extraction procedure to separate and concentrate (2E)-hexadecenal from biological samples for these measurements. To confirm our new methods, we analysed the (2E)-hexadecenal level of different cell lines and human plasma for the first time ever. Furthermore, we treated HT-29 cells with different concentrations of 4-deoxypyridoxine (DOP), which competitively inhibits pyridoxal-5-phosphate (P5P), an essential cofactor for SPL activity, and observed a significant decrease in (2E)-hexadecenal relative to the untreated cells.}, language = {en} } @article{StepanovskaZivkovicEnzmannetal.2020, author = {Stepanovska, Bisera and Zivkovic, Aleksandra and Enzmann, Gaby and Tietz, Silvia and Homann, Thomas and Kleuser, Burkhard and Engelhardt, Britta and Stark, Holger and Huwiler, Andrea}, title = {Morpholino analogues of fingolimod as novel and selective S1P1 ligands with in vivo efficacy in a mouse model of experimental antigen-induced encephalomyelitis}, series = {International journal of molecular sciences}, volume = {21}, journal = {International journal of molecular sciences}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186463}, pages = {17}, year = {2020}, abstract = {Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease of the central nervous system (CNS) which is associated with lower life expectancy and disability. The experimental antigen-induced encephalomyelitis (EAE) in mice is a useful animal model of MS, which allows exploring the etiopathogenetic mechanisms and testing novel potential therapeutic drugs. A new therapeutic paradigm for the treatment of MS was introduced in 2010 through the sphingosine 1-phosphate (S1P) analogue fingolimod (FTY720, Gilenya(R)), which acts as a functional S1P(1) antagonist on T lymphocytes to deplete these cells from the blood. In this study, we synthesized two novel structures, ST-1893 and ST-1894, which are derived from fingolimod and chemically feature a morpholine ring in the polar head group. These compounds showed a selective S1P(1) activation profile and a sustained S1P(1) internalization in cultures of S1P(1)-overexpressing Chinese hamster ovary (CHO)-K1 cells, consistent with a functional antagonism. In vivo, both compounds induced a profound lymphopenia in mice. Finally, these substances showed efficacy in the EAE model, where they reduced clinical symptoms of the disease, and, on the molecular level, they reduced the T-cell infiltration and several inflammatory mediators in the brain and spinal cord. In summary, these data suggest that S1P(1)-selective compounds may have an advantage over fingolimod and siponimod, not only in MS but also in other autoimmune diseases.}, language = {en} } @article{WiggerGulbinsKleuseretal.2019, author = {Wigger, Dominik and Gulbins, Erich and Kleuser, Burkhard and Schumacher, Fabian}, title = {Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00210}, pages = {16}, year = {2019}, abstract = {Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C₁₆ fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d₃ and L-serine-d₃. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B₁). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.}, language = {en} } @article{NeuberSchumacherGulbinsetal.2014, author = {Neuber, Corinna and Schumacher, Fabian and Gulbins, Erich and Kleuser, Burkhard}, title = {Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry}, series = {Analytical chemistry}, volume = {86}, journal = {Analytical chemistry}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac501677y}, pages = {9065 -- 9073}, year = {2014}, abstract = {Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjogren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatographyelectrospray ionizationquadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjogren-Larsson syndrome, in more detail.}, language = {en} } @article{HasanvonWebskyReichetzederetal.2019, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed and von Websky, Karoline and Reichetzeder, Christoph and Tsuprykov, Oleg and Gaballa, Mohamed Mahmoud Salem Ahmed and Guo, Jingli and Zeng, Shufei and Delic, Denis and Tammen, Harald and Klein, Thomas and Kleuser, Burkhard and Hocher, Berthold}, title = {Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {95}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {6}, publisher = {Elsevier}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2019.01.010}, pages = {1373 -- 1388}, year = {2019}, abstract = {Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham + wild type + placebo; 5/6Nx+ wild type + placebo; 5/6Nx+ wild type + linagliptin; sham + knock out+ placebo; 5/6Nx + knock out+ placebo; 5/6Nx + knock out+ linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin beta 4 and heterogeneous nuclear ribonucleoprotein Al (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-beta 1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and GIplr-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1,YB-1,thymosin beta 4 and TGF-beta 1) influenced by DPP-4 inhibition.}, language = {en} } @article{DerakhshaniKurzJaptoketal.2019, author = {Derakhshani, Shaghayegh and Kurz, Andreas and Japtok, Lukasz and Schumacher, Fabian and Pilgram, Lisa and Steinke, Maria and Kleuser, Burkhard and Sauer, Markus and Schneider-Schaulies, Sibylle and Avota, Elita}, title = {Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium}, series = {Frontiers in immunology}, volume = {10}, journal = {Frontiers in immunology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.01294}, pages = {14}, year = {2019}, abstract = {Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.}, language = {en} } @article{LiLuReichetzederetal.2016, author = {Li, Jian and Lu, Yong Ping and Reichetzeder, Christoph and Kalk, Philipp and Kleuser, Burkhard and Adamski, Jerzy and Hocher, Berthold}, title = {Maternal PCaaC38:6 is Associated With Preterm Birth - a Risk Factor for Early and Late Adverse Outcome of the Offspring}, series = {Journal of European public policy}, volume = {41}, journal = {Journal of European public policy}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000443428}, pages = {250 -- 257}, year = {2016}, abstract = {Background/Aims: Preterm birth (PTB) and low birth weight (LBW) significantly influence mortality and morbidity of the offspring in early life and also have long-term consequences in later life. A better understanding of the molecular mechanisms of preterm birth could provide new insights regarding putative preventive strategies. Metabolomics provides a powerful analytic tool to readout complex interactions between genetics, environment and health and may serve to identify relevant biomarkers. In this study, the association between 163 targeted maternal blood metabolites and gestational age was investigated in order to find candidate biomarkers for PTB. Methods: Five hundred twenty-three women were included into this observational study. Maternal blood was obtained before delivery. The concentration of 163 maternal serum metabolites was measured by flow injection tandem mass spectrometry. To find putative biomarkers for preterm birth, a three-step analysis was designed: bivariate correlation analysis followed by multivariable regression analysis and a comparison of mean values among gestational age groups. Results: Bivariate correlation analysis showed that 2 acylcarnitines (C16:2, C2), 1 amino acids (xLeu), 8 diacyl-PCs (PCaaC36:4, PCaaC38:4, PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, PCaaC40:6, PCaaC42:4), and 1 Acylalkyl-PCs (PCaeC40:5) were inversely correlated with gestational age. Multivariable regression analysis confounded for PTB history, maternal body mass index (BMI) before pregnancy, systolic blood pressure at the third trimester, and maternal body weight at the third trimester, showed that the diacyl-PC PCaaC38:6 was the only metabolite inversely correlated with gestational age. Conclusions: Maternal blood concentrations of PCaaC38:6 are independently associated with gestational age. (C) 2016 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{NeuberSchumacherGulbinsetal.2017, author = {Neuber, Corinna and Schumacher, Fabian and Gulbins, Erich and Kleuser, Burkhard}, title = {Mass Spectrometric Determination of Fatty Aldehydes Exemplified by Monitoring the Oxidative Degradation of (2E)-Hexadecenal in HepG2 Cell Lysates}, series = {Lipidomics}, volume = {125}, journal = {Lipidomics}, publisher = {Humana Press}, address = {Totowa}, isbn = {978-1-4939-6946-3}, issn = {0893-2336}, doi = {10.1007/978-1-4939-6946-3_10}, pages = {147 -- 158}, year = {2017}, abstract = {Within the last few decades, liquid chromatography-mass spectrometry (LC-MS) has become a preferred method for manifold issues in analytical biosciences, given its high selectivity and sensitivity. However, the analysis of fatty aldehydes, which are important components of cell metabolism, remains challenging. Usually, chemical derivatization prior to MS detection is required to enhance ionization efficiency. In this regard, the coupling of fatty aldehydes to hydrazines like 2,4-dinitrophenylhydrazine (DNPH) is a common approach. Additionally, hydrazones readily react with fatty aldehydes to form stable derivatives, which can be easily separated using high-performance liquid chromatography (HPLC) and subsequently detected by MS. Here, we exemplarily present the quantification of the long-chain fatty aldehyde (2E)-hexadecenal, a break-down product of the bioactive lipid sphingosine 1-phosphate (S1P), after derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) via isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight (ESI-QTOF) MS. Moreover, we show that the addition of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC hydrochloride) as a coupling agent allows for simultaneous determination of fatty aldehydes and fatty acids as DAIH derivatives. Taking advantage of this, we describe in detail how to monitor the degradation of (2E)-hexadecenal and the concurrent formation of its oxidation product (2E)-hexadecenoic acid in lysates of human hepatoblastoma (HepG2) cells within this chapter.}, language = {en} } @article{FayyazJaptokSchumacheretal.2017, author = {Fayyaz, Susann and Japtok, Lukasz and Schumacher, Fabian and Wigger, Dominik and Schulz, Tim Julius and Haubold, Kathrin and Gulbins, Erich and V{\"o}ller, Heinz and Kleuser, Burkhard}, title = {Lysophosphatidic acid inhibits insulin signaling in primary rat hepatocytes via the LPA(3) receptor subtype and is increased in obesity}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {43}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000480470}, pages = {445 -- 456}, year = {2017}, abstract = {Background/Aims: Obesity is a main risk factor for the development of hepatic insulin resistance and it is accompanied by adipocyte hypertrophy and an elevated expression of different adipokines such as autotaxin (ATX). ATX converts lysophosphatidylcholine to lysophosphatidic acid (LPA) and acts as the main producer of extracellular LPA. This bioactive lipid regulates a broad range of physiological and pathological responses by activation of LPA receptors (LPA1-6). Methods: The activation of phosphatidylinositide 3-kinases (PI3K) signaling (Akt and GSK-3ß) was analyzed via western blotting in primary rat hepatocytes. Incorporation of glucose into glycogen was measured by using radio labeled glucose. Real-time PCR analysis and pharmacological modulation of LPA receptors were performed. Human plasma LPA levels of obese (BMI > 30, n = 18) and normal weight individuals (BMI 18.5-25, n = 14) were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Results: Pretreatment of primary hepatocytes with LPA resulted in an inhibition of insulin-mediated Gck expression, PI3K activation and glycogen synthesis. Pharmacological approaches revealed that the LPA3-receptor subtype is responsible for the inhibitory effect of LPA on insulin signaling. Moreover, human plasma LPA concentrations (16: 0 LPA) of obese participants (BMI > 30) are significantly elevated in comparison to normal weight individuals (BMI 18.5-25). Conclusion: LPA is able to interrupt insulin signaling in primary rat hepatocytes via the LPA3 receptor subtype. Moreover, the bioactive lipid LPA (16: 0) is increased in obesity.}, language = {en} } @article{ChakrabortyChenBornhorstetal.2015, author = {Chakraborty, Sudipta and Chen, Pan and Bornhorst, Julia and Schwerdtle, Tanja and Schumacher, Fabian and Kleuser, Burkhard and Bowman, Aaron B. and Aschner, Michael A.}, title = {Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C-elegans}, series = {Metallomics : integrated biometal science}, volume = {7}, journal = {Metallomics : integrated biometal science}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c5mt00052a}, pages = {847 -- 856}, year = {2015}, language = {en} } @article{SamahaHamdoCongetal.2020, author = {Samaha, Doaa and Hamdo, Housam H. and Cong, Xiaojing and Schumacher, Fabian and Banhart, Sebastian and Aglar, {\"O}znur and M{\"o}ller, Heiko Michael and Heuer, Dagmar and Kleuser, Burkhard and Saied, Essa M. and Arenz, Christoph}, title = {Liposomal FRET assay identifies potent drug-like inhibitors of the Ceramide Transport Protein (CERT)}, series = {Chemistry - a European journal}, volume = {26}, journal = {Chemistry - a European journal}, number = {70}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202003283}, pages = {16616 -- 16621}, year = {2020}, abstract = {Ceramide transfer protein (CERT) mediates non-vesicular transfer of ceramide from endoplasmic reticulum to Golgi apparatus and thus catalyzes the rate-limiting step of sphingomyelin biosynthesis. Usually, CERT ligands are evaluated in tedious binding assays or non-homogenous transfer assays using radiolabeled ceramides. Herein, a facile and sensitive assay for CERT, based on Forster resonance energy transfer (FRET), is presented. To this end, we mixed donor and acceptor vesicles, each containing a different fluorescent ceramide species. By CERT-mediated transfer of fluorescent ceramide, a FRET system was established, which allows readout in 96-well plate format, despite the high hydrophobicity of the components. Screening of a 2 000 compound library resulted in two new potent CERT inhibitors. One is approved for use in humans and one is approved for use in animals. Evaluation of cellular activity by quantitative mass spectrometry and confocal microscopy showed inhibition of ceramide trafficking and sphingomyelin biosynthesis.}, language = {en} } @article{AlFadelFayyazJaptoketal.2016, author = {Al Fadel, Frdoos and Fayyaz, Susann and Japtok, Lukasz and Kleuser, Burkhard}, title = {Involvement of Sphingosine 1-Phosphate in Palmitate-Induced Non-Alcoholic Fatty Liver Disease}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {40}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000453213}, pages = {1637 -- 1645}, year = {2016}, abstract = {Background/Aims: Ectopic lipid accumulation in hepatocytes has been identified as a risk factor for the progression of liver fibrosis and is strongly associated with obesity. In particular, the saturated fatty acid palmitate is involved in initiation of liver fibrosis via formation of secondary metabolites by hepatocytes that in turn activate hepatic stellate cells (HSCs) in a paracrine manner Methods: a-smooth muscle actin-expression (alpha-SMA) as a marker of liver fibrosis was investigated via western blot analysis and immunofluorescence microscopy in HSCs (LX-2). Sphingolipid metabolism and the generation of the bioactive secondary metabolite sphingosine I-phosphate (SIP) in response to palmitate were analyzed by LC-MS/MS in hepatocytes (HepG2). To identify the molecular mechanism involved in the progression of liver fibrosis real-time PCR analysis and pharmacological modulation of SIP receptors were performed. Results: Palmitate oversupply increased intra- and extracellular SIP-concentrations in hepatocytes. Conditioned medium from HepG2 cells initiated fibrosis by enhancing alpha-SMA-expression in LX-2 in a S1P-dependent manner In accordance, fibrotic response in the presence of SIP was also observed in HSCs. Pharmacological inhibition of SIP receptors demonstrated that S1P(3) is the crucial receptor subtype involved in this process. Conclusion: SIP is synthesized in hepatocytes in response to palmitate and released into the extracellular environment leading to an activation of HSCs via the S1P(3) receptor (C) 2016 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{FayyazHenkelJaptoketal.2014, author = {Fayyaz, Susann and Henkel, Janin and Japtok, Lukasz and Kr{\"a}mer, Stephanie and Damm, Georg and Seehofer, Daniel and P{\"u}schel, Gerhard Paul and Kleuser, Burkhard}, title = {Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P(2) receptor subtype}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {57}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-013-3123-6}, pages = {373 -- 382}, year = {2014}, abstract = {Enhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance. The incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice. Palmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P(2) receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P(2), was not able to inhibit insulin signalling. These data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P(2) receptor to impair insulin signalling. In particular, S1P(2) inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance.}, language = {en} } @article{MeinersPalmieriKlopfleischetal.2019, author = {Meiners, Jana and Palmieri, Vittoria and Klopfleisch, Robert and Ebel, Jana-Fabienne and Japtok, Lukasz and Schumacher, Fabian and Yusuf, Ayan Mohamud and Becker, Katrin Anne and Z{\"o}ller, Julia and Hose, Matthias and Kleuser, Burkhard and Hermann, Dirk Matthias and Kolesnick, Richard N. and Buer, Jan and Hansen, Wiebke and Westendorf, Astrid M.}, title = {Intestinal acid sphingomyelinase protects from severe Pathogen-Driven Colitis}, series = {Frontiers in immunology}, volume = {10}, journal = {Frontiers in immunology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.01386}, pages = {14}, year = {2019}, abstract = {Inflammatory diseases of the gastrointestinal tract are emerging as a global problem with increased evidence and prevalence in numerous countries. A dysregulated sphingolipid metabolism occurs in patients with ulcerative colitis and is discussed to contribute to its pathogenesis. In the present study, we determined the impact of acid sphingomyelinase (Asm), which catalyzes the hydrolysis of sphingomyelin to ceramide, on the course of Citrobacter (C.) rodentium-driven colitis. C. rodentium is an enteric pathogen and induces colonic inflammation very similar to the pathology in patients with ulcerative colitis. We found that mice with Asm deficiency or Asm inhibition were strongly susceptible to C. rodentium infection. These mice showed increased levels of C. rodentium in the feces and were prone to bacterial spreading to the systemic organs. In addition, mice lacking Asm activity showed an uncontrolled inflammatory T(h)1 and T(h)17 response, which was accompanied by a stronger colonic pathology compared to infected wild type mice. These findings identified Asm as an essential regulator of mucosal immunity to the enteric pathogen C. rodentium.}, language = {en} } @article{HollmannWernerAvotaetal.2016, author = {Hollmann, Claudia and Werner, Sandra and Avota, Elita and Reuter, Dajana and Japtok, Lukasz and Kleuser, Burkhard and Gulbins, Erich and Becker, Katrin Anne and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4(+) Conventional versus Foxp3(+) Regulatory T Cells}, series = {The journal of immunology}, volume = {197}, journal = {The journal of immunology}, publisher = {American Assoc. of Immunologists}, address = {Bethesda}, issn = {0022-1767}, doi = {10.4049/jimmunol.1600691}, pages = {3130 -- 3141}, year = {2016}, abstract = {CD4(+) Foxp3(+) regulatory T cells (Tregs) depend on CD28 signaling for their survival and function, a receptor that has been previously shown to activate the acid sphingomyelinase (Asm)/ceramide system. In this article, we show that the basal and CD28-induced Asm activity is higher in Tregs than in conventional CD4(+) T cells (Tconvs) of wild-type (wt) mice. In Asm-deficient (Smpd1(-/-); Asm(-/-)) mice, as compared with wt mice, the frequency of Tregs among CD4(+) T cells, turnover of the effector molecule CTLA-4, and their suppressive activity in vitro were increased. The biological significance of these findings was confirmed in our Treg-sensitive mouse model of measles virus (MV) CNS infection, in which we observed more infected neurons and less MV-specific CD8(+) T cells in brains of Asm(-/-) mice compared with wt mice. In addition to genetic deficiency, treatment of wt mice with the Asm inhibitor amitriptyline recapitulated the phenotype of Asm-deficient mice because it also increased the frequency of Tregs among CD4(+) T cells. Reduced absolute cell numbers of Tconvs after inhibitor treatment in vivo and extensive in vitro experiments revealed that Tregs are more resistant toward Asm inhibitor-induced cell death than Tconvs. Mechanistically, IL-2 was capable of providing crucial survival signals to the Tregs upon inhibitor treatment in vitro, shifting the Treg/Tconv ratio to the Treg side. Thus, our data indicate that Asm-inhibiting drugs should be further evaluated for the therapy of inflammatory and autoimmune disorders.}, language = {en} } @article{FolkessonVorkapicGulbinsetal.2017, author = {Folkesson, Maggie and Vorkapic, Emina and Gulbins, Erich and Japtok, Lukasz and Kleuser, Burkhard and Welander, Martin and L{\"a}nne, Toste and W{\aa}gs{\"a}ter, Dick}, title = {Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms}, series = {Journal of vascular surgery}, volume = {65}, journal = {Journal of vascular surgery}, number = {4}, publisher = {Elsevier}, address = {New York}, issn = {0741-5214}, doi = {10.1016/j.jvs.2015.12.056}, pages = {1171 -- 1179}, year = {2017}, abstract = {Background: Abdominal aortic aneurysm (AAA) is a deadly irreversible weakening and distension of the abdominal aortic wall. The pathogenesis of AAA remains poorly understood. Investigation into the physical and molecular characteristics of perivascular adipose tissue (PVAT) adjacent to AAA has not been done before and is the purpose of this study. Methods and Results: Human aortae, periaortic PVAT, and fat surrounding peripheral arteries were collected from patients undergoing elective surgical repair of AAA. Control aortas were obtained from recently deceased healthy organ donors with no known arterial disease. Aorta and PVAT was found in AAA to larger extent compared with control aortas. Immunohistochemistry revealed neutrophils, macrophages, mast cells, and T-cells surrounding necrotic adipocytes. Gene expression analysis showed that neutrophils, mast cells, and T-cells were found to be increased in PVAT compared with AAA as well as cathepsin K and S. The concentration of ceramides in PVAT was determined using mass spectrometry and correlated with content of T-cells in the PVAT. Conclusions: Our results suggest a role for abnormal necrotic, inflamed, proteolytic adipose tissue to the adjacent aneurysmal aortic wall in ongoing vascular damage.}, language = {en} } @article{ReichetzederPutraPfabetal.2016, author = {Reichetzeder, Christoph and Putra, S. E. Dwi and Pfab, T. and Slowinski, T. and Neuber, Corinna and Kleuser, Burkhard and Hocher, Berthold}, title = {Increased global placental DNA methylation levels are associated with gestational diabetes}, series = {Clinical epigenetics}, volume = {8}, journal = {Clinical epigenetics}, publisher = {BioMed Central}, address = {London}, issn = {1868-7083}, doi = {10.1186/s13148-016-0247-9}, pages = {10}, year = {2016}, abstract = {Background: Gestational diabetes mellitus (GDM) is associated with adverse pregnancy outcomes. It is known that GDM is associated with an altered placental function and changes in placental gene regulation. More recent studies demonstrated an involvement of epigenetic mechanisms. So far, the focus regarding placental epigenetic changes in GDM was set on gene-specific DNA methylation analyses. Studies that robustly investigated placental global DNA methylation are lacking. However, several studies showed that tissue-specific alterations in global DNA methylation are independently associated with type 2 diabetes. Thus, the aim of this study was to characterize global placental DNA methylation by robustly measuring placental DNA 5-methylcytosine (5mC) content and to examine whether differences in placental global DNA methylation are associated with GDM. Methods: Global DNA methylation was quantified by the current gold standard method, LC-MS/MS. In total, 1030 placental samples were analyzed in this single-center birth cohort study. Results: Mothers with GDM displayed a significantly increased global placental DNA methylation (3.22 +/- 0.63 vs. 3.00 +/- 0.46 \%; p = 0.013; +/- SD). Bivariate logistic regression showed a highly significant positive correlation between global placental DNA methylation and the presence of GDM (p = 0.0009). Quintile stratification according to placental DNA 5mC levels revealed that the frequency of GDM was evenly distributed in quintiles 1-4 (2.9-5.3 \%), whereas the frequency in the fifth quintile was significantly higher (10.7 \%; p = 0.003). Bivariate logistic models adjusted for maternal age, BMI, ethnicity, recurrent miscarriages, and familiar diabetes predisposition clearly demonstrated an independent association between global placental DNA hypermethylation and GDM. Furthermore, an ANCOVA model considering known predictors of DNA methylation substantiated an independent association between GDM and placental DNA methylation. Conclusions: This is the first study that employed a robust quantitative assessment of placental global DNA methylation in over a thousand placental samples. The study provides large scale evidence that placental global DNA hypermethylation is associated with GDM, independent of established risk factors.}, language = {en} } @article{WalterCollenburgJaptoketal.2016, author = {Walter, T. and Collenburg, Lena and Japtok, Lukasz and Kleuser, Burkhard and Schneider-Schaulies, Sibylle and Mueller, N. and Becam, Jerome and Schubert-Unkmeir, A. and Kong, J. N. and Bieberich, Erhard and Seibel, J.}, title = {Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells}, series = {Chemical communications}, volume = {52}, journal = {Chemical communications}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c6cc02879a}, pages = {8612 -- 8614}, year = {2016}, abstract = {The synthesis and biological evaluation of azido-N-oleoyl serinol is reported. It mimicks biofunctional lipid ceramides and has shown to be capable of click reactions for cell membrane imaging in Jurkat and human brain microvascular endothelial cells.}, language = {en} } @article{RakersSchumacherMeinletal.2016, author = {Rakers, Christin and Schumacher, Fabian and Meinl, Walter and Glatt, Hansruedi and Kleuser, Burkhard and Wolber, Gerhard}, title = {In Silico Prediction of Human Sulfotransferase 1E1 Activity Guided by Pharmacophores from Molecular Dynamics Simulations}, series = {The journal of biological chemistry}, volume = {291}, journal = {The journal of biological chemistry}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M115.685610}, pages = {58 -- 71}, year = {2016}, abstract = {Acting during phase II metabolism, sulfotransferases (SULTs) serve detoxification by transforming a broad spectrum of compounds from pharmaceutical, nutritional, or environmental sources into more easily excretable metabolites. However, SULT activity has also been shown to promote formation of reactive metabolites that may have genotoxic effects. SULT subtype 1E1 (SULT1E1) was identified as a key player in estrogen homeostasis, which is involved in many physiological processes and the pathogenesis of breast and endometrial cancer. The development of an in silico prediction model for SULT1E1 ligands would therefore support the development of metabolically inert drugs and help to assess health risks related to hormonal imbalances. Here, we report on a novel approach to develop a model that enables prediction of substrates and inhibitors of SULT1E1. Molecular dynamics simulations were performed to investigate enzyme flexibility and sample protein conformations. Pharmacophores were developed that served as a cornerstone of the model, and machine learning techniques were applied for prediction refinement. The prediction model was used to screen the DrugBank (a database of experimental and approved drugs): 28\% of the predicted hits were reported in literature as ligands of SULT1E1. From the remaining hits, a selection of nine molecules was subjected to biochemical assay validation and experimental results were in accordance with the in silico prediction of SULT1E1 inhibitors and substrates, thus affirming our prediction hypotheses.}, language = {en} } @article{GohlkeZagoriyInostrozaetal.2019, author = {Gohlke, Sabrina and Zagoriy, Vyacheslav and Inostroza, Alvaro Cuadros and Meret, Michael and Mancini, Carola and Japtok, Lukasz and Schumacher, Fabian and Kuhlow, Doreen and Graja, Antonia and Stephanowitz, Heike and J{\"a}hnert, Markus and Krause, Eberhard and Wernitz, Andreas and Petzke, Klaus-Juergen and Sch{\"u}rmann, Annette and Kleuser, Burkhard and Schulz, Tim Julius}, title = {Identification of functional lipid metabolism biomarkers of brown adipose tissue aging}, series = {Molecular Metabolism}, volume = {24}, journal = {Molecular Metabolism}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8778}, doi = {10.1016/j.molmet.2019.03.011}, pages = {1 -- 17}, year = {2019}, abstract = {Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions.}, language = {en} } @article{GereckeScholtkaLoewensteinetal.2015, author = {Gerecke, Christian and Scholtka, Bettina and Loewenstein, Yvonne and Fait, Isabel and Gottschalk, Uwe and Rogoll, Dorothee and Melcher, Ralph and Kleuser, Burkhard}, title = {Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer}, series = {Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft}, volume = {141}, journal = {Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft}, number = {12}, publisher = {Springer}, address = {New York}, issn = {0171-5216}, doi = {10.1007/s00432-015-1972-8}, pages = {2097 -- 2107}, year = {2015}, abstract = {Epigenetic silencing of tumor suppressor genes is involved in early transforming events and has a high impact on colorectal carcinogenesis. Likewise, colon cancers that derive from chronically inflamed bowel diseases frequently exhibit epigenetic changes. But there is little data about epigenetic aberrations causing colorectal cancer in chronically inflamed tissue. The aim of the present study was to evaluate the aberrant gain of methylation in the gene promoters of VIM, TFPI2 and ITGA4 as putative early markers in the development from inflamed tissue via precancerous lesions toward colorectal cancer. Initial screening of different cancer cell lines by using methylation-specific PCR revealed a putative colon cancer-specific methylation pattern. Additionally, a demethylation assay was performed to investigate the methylation-dependent gene silencing of ITGA4. The candidate markers were analyzed in colonic tissue specimens from patients with colorectal cancer (n = 15), adenomas (n = 76), serrated lesions (n = 13), chronic inflammation (n = 10) and normal mucosal samples (n = 9). A high methylation frequency of VIM (55.6 \%) was observed in normal colon tissue, whereas ITGA4 and TFPI2 were completely unmethylated in controls. A significant gain of methylation frequency with progression of disease as well as an age-dependent effect was detectable for TFPI2. ITGA4 methylation frequency was high in precancerous and cancerous tissues as well as in inflammatory bowel diseases (IBD). The already established methylation marker VIM does not permit a specific and sensitive discrimination of healthy and neoplastic tissue. The methylation markers ITGA4 and TFPI2 seem to be suitable risk markers for inflammation-associated colon cancer.}, language = {en} } @article{SchumacherChakrabortyKleuseretal.2015, author = {Schumacher, Fabian and Chakraborty, Sudipta and Kleuser, Burkhard and Gulbins, Erich and Schwerdtle, Tanja and Aschner, Michael A. and Bornhorst, Julia}, title = {Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans}, series = {Talanta : the international journal of pure and applied analytical chemistry}, volume = {144}, journal = {Talanta : the international journal of pure and applied analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-9140}, doi = {10.1016/j.talanta.2015.05.057}, pages = {71 -- 79}, year = {2015}, abstract = {Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{NojimaFreemanSchusteretal.2016, author = {Nojima, Hiroyuki and Freeman, Christopher M. and Schuster, Rebecca M. and Japtok, Lukasz and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich and Lentsch, Alex B.}, title = {Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate}, series = {Journal of hepatology}, volume = {64}, journal = {Journal of hepatology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-8278}, doi = {10.1016/j.jhep.2015.07.030}, pages = {60 -- 68}, year = {2016}, abstract = {Background \& Aims: Exosomes are small membrane vesicles involved in intercellular communication. Hepatocytes are known to release exosomes, but little is known about their biological function. We sought to determine if exosomes derived from hepatocytes contribute to liver repair and regeneration after injury. Methods: Exosomes derived from primary murine hepatocytes were isolated and characterized biochemically and biophysically. Using cultures of primary hepatocytes, we tested whether hepatocyte exosomes induced proliferation of hepatocytes in vitro. Using models of ischemia/reperfusion injury and partial hepatectomy, we evaluated whether hepatocyte exosomes promote hepatocyte proliferation and liver regeneration in vivo. Results: Hepatocyte exosomes, but not exosomes from other liver cell types, induce dose-dependent hepatocyte proliferation in vitro and in vivo. Mechanistically, hepatocyte exosomes directly fuse with target hepatocytes and transfer neutral ceramidase and sphingosine kinase 2 (SK2) causing increased synthesis of sphingosine-1-phosphate (S1P) within target hepatocytes. Ablation of exosomal SK prevents the proliferative effect of exosomes. After ischemia/reperfusion injury, the number of circulating exosomes with proliferative effects increases. Conclusions: Our data shows that hepatocyte-derived exosomes deliver the synthetic machinery to form S1P in target hepatocytes resulting in cell proliferation and liver regeneration after ischemia/reperfusion injury or partial hepatectomy. These findings represent a potentially novel new contributing mechanism of liver regeneration and have important implications for new therapeutic approaches to acute and chronic liver disease. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{SahleBalzusGereckeetal.2016, author = {Sahle, Fitsum Feleke and Balzus, Benjamin and Gerecke, Christian and Kleuser, Burkhard and Bodmeier, Roland}, title = {Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential}, series = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, volume = {92}, journal = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0928-0987}, doi = {10.1016/j.ejps.2016.07.004}, pages = {98 -- 109}, year = {2016}, abstract = {pH-sensitive nanoparticles which release in a controlled fashion on the skin or dissolve in the hair follicle could significantly improve treatment effectiveness and make transfollicular drug delivery a success. Dexamethasone-loaded Eudragit L 100 nanoparticles were prepared by nanoprecipitation from an organic drug-polymer solution. Their toxicity potential was assessed using isolated human fibroblasts. pH-dependent swelling and erosion kinetics of the nanoparticles were investigated by dynamic light scattering and viscosity measurements and its effect on drug release was assessed in vitro with Franz diffusion cells. Stable, 100-550 nm-sized dexamethasone-loaded Eudragit L 100 nanoparticles with drug loading capacity and entrapment efficiency as high as 83\% and 85\%, respectively, were obtained by using polyvinyl alcohol as a stabilizer and ethanol as organic solvent The nanoparticles showed little or no toxicity on isolated normal human fibroblasts. Dexamethasone existed in the nanoparticles as solid solution or in amorphous form. The nanoparticles underwent extensive swelling and slow drug release in media with a low buffer capacity (as low as 10 mM) and a higher pH or at a pH close to the dissolution pH of the polymer (pH 6) and a higher buffer capacity. In 40 mM buffer and above pH 6.8, the nanoparticles eroded fast or dissolved completely and thus released the drug rapidly. pH-sensitive nanoparticles which potentially release in a controlled manner on the stratum corneum but dissolve in the hair follicle could be prepared. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{BalzusSahleHoenzkeetal.2017, author = {Balzus, Benjamin and Sahle, Fitsum Feleke and H{\"o}nzke, Stefan and Gerecke, Christian and Schumacher, Fabian and Hedtrich, Sarah and Kleuser, Burkhard and Bodmeier, Roland}, title = {Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium}, series = {European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology}, volume = {115}, journal = {European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2017.02.001}, pages = {122 -- 130}, year = {2017}, abstract = {Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3-0.7\%) than ethyl cellulose nanoparticles (1.4-2.2\%). By blending the two polymers (1:1), small (105 nm), positively charged (+37 mV) nanoparticles with sufficient dexamethasone loading (1.3\%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness.}, language = {en} } @article{SahleGereckeKleuseretal.2017, author = {Sahle, Fitsum Feleke and Gerecke, Christian and Kleuser, Burkhard and Bodmeier, Roland}, title = {Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications}, series = {International Journal of Pharmaceutics}, volume = {516}, journal = {International Journal of Pharmaceutics}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-5173}, doi = {10.1016/j.ijpharm.2016.11.029}, pages = {21 -- 31}, year = {2017}, abstract = {pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit (R) L 100, Eudragit (R) L 100-55, Eudragit (R) S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700 nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10 mM pH 7.5 buffer and released > 80\% of the drug within 7 h. The acrylate nanoparticles dissolved in 40 mM pH 7.5 buffer and released 65-70\% of the drug within 7 h. The nanoparticles remained intact in 10 and 40 mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40 mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained.}, language = {en} } @article{HausmannZoschkeWolffetal.2019, author = {Hausmann, Christian and Zoschke, Christian and Wolff, Christopher and Darvin, Maxim E. and Sochorova, Michaela and Kovacik, Andrej and Wanjiku, Barbara and Schumacher, Fabian and Tigges, Julia and Kleuser, Burkhard and Lademann, Juergen and Fritsche, Ellen and Vavrova, Katerina and Ma, Nan and Schaefer-Korting, Monika}, title = {Fibroblast origin shapes tissue homeostasis, epidermal differentiation, and drug uptake}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-39770-6}, pages = {10}, year = {2019}, abstract = {Preclinical studies frequently lack predictive value for human conditions. Human cell-based disease models that reflect patient heterogeneity may reduce the high failure rates of preclinical research. Herein, we investigated the impact of primary cell age and body region on skin homeostasis, epidermal differentiation, and drug uptake. Fibroblasts derived from the breast skin of female 20- to 30-yearolds or 60- to 70-year-olds and fibroblasts from juvenile foreskin (<10 years old) were compared in cell monolayers and in reconstructed human skin (RHS). RHS containing aged fibroblasts differed from its juvenile and adult counterparts, especially in terms of the dermal extracellular matrix composition and interleukin-6 levels. The site from which the fibroblasts were derived appeared to alter fibroblast-keratinocyte crosstalk by affecting, among other things, the levels of granulocyte-macrophage colony-stimulating factor. Consequently, the epidermal expression of filaggrin and e-cadherin was increased in RHS containing breast skin fibroblasts, as were lipid levels in the stratum corneum. In conclusion, the region of the body from which fibroblasts are derived appears to affect the epidermal differentiation of RHS, while the age of the fibroblast donors determines the expression of proteins involved in wound healing. Emulating patient heterogeneity in preclinical studies might improve the treatment of age-related skin conditions.}, language = {en} } @article{LuReichetzederPrehnetal.2018, author = {Lu, Yong-Ping and Reichetzeder, Christoph and Prehn, Cornelia and von Websky, Karoline and Slowinski, Torsten and Chen, You-Peng and Yin, Liang-Hong and Kleuser, Burkhard and Yang, Xue-Song and Adamski, Jerzy and Hocher, Berthold}, title = {Fetal serum metabolites are independently associated with Gestational diabetes mellitus}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {45}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000487119}, pages = {625 -- 638}, year = {2018}, abstract = {Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{NitezkiKleuserKraemer2018, author = {Nitezki, Tina and Kleuser, Burkhard and Kr{\"a}mer, Stephanie}, title = {Fatal gastric distension in a gold thioglucose mouse model of obesity}, series = {Laboratory Animals}, volume = {53}, journal = {Laboratory Animals}, number = {1}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {0023-6772}, doi = {10.1177/0023677218803384}, pages = {89 -- 94}, year = {2018}, abstract = {This case report addresses the problem of underreporting negative results and adverse side effects in animal testing. We present our findings regarding a hyperphagic mouse model associated with unforeseen high mortality. The results outline the necessity of reporting detailed information in the literature to avoid duplication. Obese mouse models are essential in the study of obesity, metabolic syndrome and diabetes mellitus. An experimental model of obesity can be induced by the administration of gold thioglucose (GTG). After transcending the blood-brain barrier, the GTG molecule interacts with regions of the ventromedial hypothalamus, thereby primarily targeting glucose-sensitive neurons. When these neurons are impaired, mice become insensitive to the satiety effects of glucose and develop hyperphagia. In a pilot study for optimising dosage and body weight development, C57BL/6 mice were treated with GTG (0.5 mg/g body weight) or saline, respectively. Animals were provided a physiological amount of standard diet (5 g per animal) for the first 24 hours after treatment to prevent gastric dilatation. Within 24 hours after GTG injection, all GTG-treated animals died of gastric overload and subsequent circulatory shock. Animals developed severe attacks of hyperphagia, and as the amount of provided chow was restricted, mice exhibited unforeseen pica and ingested bedding material. These observations strongly suggest that restricted feeding is contraindicated concerning GTG application. Presumably, the impulse of excessive food intake was a strong driving force. Therefore, the actual degree of suffering in the GTG-induced model of hyperphagia should be revised from moderate to severe.}, language = {en} } @article{BoehmFloesserErmleretal.2013, author = {B{\"o}hm, Andreas and Fl{\"o}ßer, Anja and Ermler, Swen and Fender, Anke C. and L{\"u}th, Anja and Kleuser, Burkhard and Schr{\"o}r, Karsten and Rauch, Bernhard H.}, title = {Factor-Xa-induced mitogenesis and migration require sphingosine kinase activity and S1P formation in human vascular smooth muscle cells}, series = {Cardiovascular research}, volume = {99}, journal = {Cardiovascular research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0008-6363}, doi = {10.1093/cvr/cvt112}, pages = {505 -- 513}, year = {2013}, abstract = {Sphingosine-1-phosphate (S1P) is a cellular signalling lipid generated by sphingosine kinase-1 (SPHK1). The aim of the study was to investigate whether the activated coagulation factor-X (FXa) regulates SPHK1 transcription and the formation of S1P and subsequent mitogenesis and migration of human vascular smooth muscle cells (SMC). FXa induced a time- (36 h) and concentration-dependent (330 nmol/L) increase of SPHK1 mRNA and protein expression in human aortic SMC, resulting in an increased synthesis of S1P. FXa-stimulated transcription of SPHK1 was mediated by the protease-activated receptor-1 (PAR-1) and PAR-2. In human carotid artery plaques, expression of SPHK1 was observed at SMC-rich sites and was co-localized with intraplaque FX/FXa content. FXa-induced SPHK1 transcription was attenuated by inhibitors of Rho kinase (Y27632) and by protein kinase C (PKC) isoforms (GF109203X). In addition, FXa rapidly induced the activation of the small GTPase Rho A. Inhibition of signalling pathways which regulate SPHK1 expression, inhibition of its activity or siRNA-mediated SPHK1 knockdown attenuated the mitogenic and chemotactic response of human SMC to FXa. These data suggest that FXa induces SPHK1 expression and increases S1P formation independent of thrombin and that this involves the activation of Rho A and PKC signalling. In addition to its key function in coagulation, this direct effect of FXa on human SMC may increase cell proliferation and migration at sites of vessel injury and thereby contribute to the progression of vascular lesions.}, language = {en} }