@article{RadbruchPischonOstrowskietal.2017, author = {Radbruch, Moritz and Pischon, Hannah and Ostrowski, Anja and Volz, Pierre and Brodwolf, Robert and Neumann, Falko and Unbehauen, Michael and Kleuser, Burkhard and Haag, Rainer and Ma, Nan and Alexiev, Ulrike and Mundhenk, Lars and Gruber, Achim D.}, title = {Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin}, series = {Nanoscale Research Letters}, volume = {12}, journal = {Nanoscale Research Letters}, number = {64}, publisher = {Springer}, address = {New York}, issn = {1556-276X}, doi = {10.1186/s11671-017-1835-0}, pages = {12}, year = {2017}, abstract = {Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.}, language = {en} } @article{EdlichGereckeGiulbudagianetal.2016, author = {Edlich, Alexander and Gerecke, Christian and Giulbudagian, Michael and Neumann, Falko and Hedtrich, Sarah and Schaefer-Korting, Monika and Ma, Nan and Calderon, Marcelo and Kleuser, Burkhard}, title = {Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.12.016}, pages = {155 -- 163}, year = {2016}, abstract = {Engineered nanogels are of high value for a targeted and controlled transport of compounds due to the ability to change their chemical properties by external stimuli. As it has been indicated that nanogels possess a high ability to penetrate the stratum corneum, it cannot be excluded that nanogels interact with dermal dendritic cells, especially in diseased skin. In this study the potential crosstalk of the thermore-sponsive nanogels (tNGs) with the dendritic cells of the skin was investigated with the aim to determine the immunotoxicological properties of the nanogels. The investigated tNGs were made of dendritic polyglycerol (dPG) and poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)), as polymer conferring thermoresponsive properties. Although the tNGs were taken up, they displayed neither cytotoxic and genotoxic effects nor any induction of reactive oxygen species in the tested cells. Interestingly, specific uptake mechanisms of the tNGs by the dendritic cells were depending on the nanogels cloud point temperature (Tcp), which determines the phase transition of the nanoparticle. The study points to caveolae-mediated endocytosis as being the major tNGs uptake mechanism at 37 degrees C, which is above the Tcp of the tNGs. Remarkably, an additional uptake mechanism, beside caveolae-mediated endocytosis, was observed at 29 degrees C, which is the Tcp of the tNGs. At this temperature, which is characterized by two different states of the tNGs, macropinocytosis was involved as well. In summary, our study highlights the impact of thermoresponsivity on the cellular uptake mechanisms which has to be taken into account if the tNGs are used as a drug delivery system.}, language = {en} } @article{SahleGereckeKleuseretal.2017, author = {Sahle, Fitsum Feleke and Gerecke, Christian and Kleuser, Burkhard and Bodmeier, Roland}, title = {Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications}, series = {International Journal of Pharmaceutics}, volume = {516}, journal = {International Journal of Pharmaceutics}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-5173}, doi = {10.1016/j.ijpharm.2016.11.029}, pages = {21 -- 31}, year = {2017}, abstract = {pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit (R) L 100, Eudragit (R) L 100-55, Eudragit (R) S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700 nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10 mM pH 7.5 buffer and released > 80\% of the drug within 7 h. The acrylate nanoparticles dissolved in 40 mM pH 7.5 buffer and released 65-70\% of the drug within 7 h. The nanoparticles remained intact in 10 and 40 mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40 mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained.}, language = {en} } @article{EdlichVolzBrodwolfetal.2018, author = {Edlich, Alexander and Volz, Pierre and Brodwolf, Robert and Unbehauen, Michael and Mundhenk, Lars and Gruber, Achim D. and Hedtrich, Sarah and Haag, Rainer and Alexiev, Ulrike and Kleuser, Burkhard}, title = {Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin}, series = {Biomaterials : biomaterials reviews online}, volume = {162}, journal = {Biomaterials : biomaterials reviews online}, publisher = {Elsevier}, address = {Oxford}, issn = {0142-9612}, doi = {10.1016/j.biomaterials.2018.01.058}, pages = {60 -- 70}, year = {2018}, abstract = {Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HasanvonWebskyReichetzederetal.2019, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed and von Websky, Karoline and Reichetzeder, Christoph and Tsuprykov, Oleg and Gaballa, Mohamed Mahmoud Salem Ahmed and Guo, Jingli and Zeng, Shufei and Delic, Denis and Tammen, Harald and Klein, Thomas and Kleuser, Burkhard and Hocher, Berthold}, title = {Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {95}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {6}, publisher = {Elsevier}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2019.01.010}, pages = {1373 -- 1388}, year = {2019}, abstract = {Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham + wild type + placebo; 5/6Nx+ wild type + placebo; 5/6Nx+ wild type + linagliptin; sham + knock out+ placebo; 5/6Nx + knock out+ placebo; 5/6Nx + knock out+ linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin beta 4 and heterogeneous nuclear ribonucleoprotein Al (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-beta 1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and GIplr-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1,YB-1,thymosin beta 4 and TGF-beta 1) influenced by DPP-4 inhibition.}, language = {en} } @article{LuReichetzederPrehnetal.2018, author = {Lu, Yong-Ping and Reichetzeder, Christoph and Prehn, Cornelia and von Websky, Karoline and Slowinski, Torsten and Chen, You-Peng and Yin, Liang-Hong and Kleuser, Burkhard and Yang, Xue-Song and Adamski, Jerzy and Hocher, Berthold}, title = {Fetal serum metabolites are independently associated with Gestational diabetes mellitus}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {45}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000487119}, pages = {625 -- 638}, year = {2018}, abstract = {Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{GiulbudagianYeallandHoenzkeetal.2018, author = {Giulbudagian, Michael and Yealland, Guy and H{\"o}nzke, S. and Edlich, A. and Geisend{\"o}rfer, Birte and Kleuser, Burkhard and Hedtrich, Sarah and Calderon, Marcelo}, title = {Breaking the Barrier}, series = {Theranostics}, volume = {8}, journal = {Theranostics}, number = {2}, publisher = {Ivyspring International Publisher}, address = {Lake haven}, issn = {1838-7640}, doi = {10.7150/thno.21668}, pages = {450 -- 463}, year = {2018}, abstract = {Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin.}, language = {en} } @article{NitezkiKleuserKraemer2018, author = {Nitezki, Tina and Kleuser, Burkhard and Kr{\"a}mer, Stephanie}, title = {Fatal gastric distension in a gold thioglucose mouse model of obesity}, series = {Laboratory Animals}, volume = {53}, journal = {Laboratory Animals}, number = {1}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {0023-6772}, doi = {10.1177/0023677218803384}, pages = {89 -- 94}, year = {2018}, abstract = {This case report addresses the problem of underreporting negative results and adverse side effects in animal testing. We present our findings regarding a hyperphagic mouse model associated with unforeseen high mortality. The results outline the necessity of reporting detailed information in the literature to avoid duplication. Obese mouse models are essential in the study of obesity, metabolic syndrome and diabetes mellitus. An experimental model of obesity can be induced by the administration of gold thioglucose (GTG). After transcending the blood-brain barrier, the GTG molecule interacts with regions of the ventromedial hypothalamus, thereby primarily targeting glucose-sensitive neurons. When these neurons are impaired, mice become insensitive to the satiety effects of glucose and develop hyperphagia. In a pilot study for optimising dosage and body weight development, C57BL/6 mice were treated with GTG (0.5 mg/g body weight) or saline, respectively. Animals were provided a physiological amount of standard diet (5 g per animal) for the first 24 hours after treatment to prevent gastric dilatation. Within 24 hours after GTG injection, all GTG-treated animals died of gastric overload and subsequent circulatory shock. Animals developed severe attacks of hyperphagia, and as the amount of provided chow was restricted, mice exhibited unforeseen pica and ingested bedding material. These observations strongly suggest that restricted feeding is contraindicated concerning GTG application. Presumably, the impulse of excessive food intake was a strong driving force. Therefore, the actual degree of suffering in the GTG-induced model of hyperphagia should be revised from moderate to severe.}, language = {en} } @article{KakkasserySkosyrskiLuethetal.2017, author = {Kakkassery, Vinodh and Skosyrski, S. and L{\"u}th, A. and Kleuser, Burkhard and van der Giet, Maria and Tate, R. and Reinhard, J. and Faissner, Andreas and Joachim, Stephanie Christine and Kociok, N.}, title = {Etoposide Upregulates Survival Favoring Sphingosine-1-Phosphate in Etoposide-Resistant Retinoblastoma Cells}, series = {Pathology \& Oncology Research}, volume = {25}, journal = {Pathology \& Oncology Research}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1219-4956}, doi = {10.1007/s12253-017-0360-x}, pages = {391 -- 399}, year = {2017}, abstract = {Improved knowledge of retinoblastoma chemotherapy resistance is needed to raise treatment efficiency. The objective of this study was to test whether etoposide alters glucosyl-ceramide, ceramide, sphingosine, and sphingosine-1-phosphate (sphingosine-1-P) levels in parental retinoblastoma cells (WERI Rb1) or their etoposide-resistant subclones (WERI EtoR). WERI Rb1 and WERI EtoR were incubated with 400 ng/ml etoposide for 24 h. Levels of glucosyl-ceramides, ceramides, sphingosine, sphingosine-1-P were detected by Q-TOF mass spectrometry. Statistical analysis was done by ANOVA followed by Tukey post-hoc test (p < 0.05). The mRNA expression of sphingolipid pathways enzymes in WERI Rb1, WERI EtoR and four human retinoblastoma tissue samples was analyzed by quantitative real-time PCR. Pathways enzymes mRNA expression confirmed similarities of human sphingolipid metabolism in both cell lines and tissue samples, but different relative expression. Significant up-regulation of sphingosine was seen in both cell lines (p < 0.001). Only sphingosine-1-P up-regulation was significantly increased in WERI EtoR (p < 0.01), but not in WERI Rb1 (p > 0.2). Both cell lines upregulate pro-apoptotic sphingosine after etoposide incubation, but only WERI EtoR produces additional survival favorable sphingosine-1-P. These data may suggest a role of sphingosine-1-P in retinoblastoma chemotherapy resistance, although this seems not to be the only resistance mechanism.}, language = {en} } @article{LuethNeuberKleuser2012, author = {L{\"u}th, Anja and Neuber, Corinna and Kleuser, Burkhard}, title = {Novel methods for the quantification of (2E)-hexadecenal by liquid chromatography with detection by either ESI QTOF tandem mass spectrometry or fluorescence measurement}, series = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, volume = {722}, journal = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-2670}, doi = {10.1016/j.aca.2012.01.063}, pages = {70 -- 79}, year = {2012}, abstract = {Sphingosine-1-phosphate lyase (SPL) is the only known enzyme that irreversibly cleaves sphingosine-1-phosphate (S1P) into phosphoethanolamine and (2E)-hexadecenal during the final step of sphingolipid catabolism. Because S1P is involved in a wide range of physiological and diseased processes, determining the activity of the degrading enzyme is of great interest. Therefore, we developed two procedures based on liquid chromatography (LC) for analysing (2E)-hexadecenal, which is one of the two S1P degradation products. After separation, two different quantification methods were performed, tandem mass spectrometry (MS) and fluorescence detection. However, (2E)-hexadecenal as a long-chain aldehyde is not ionisable by electrospray ionisation (ESI) for MS quantification and has an insufficient number of corresponding double bonds for fluorescence detection. Therefore, we investigated 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) as a derivatisation reagent. DAIH transforms the aldehyde into an ionisable and fluorescent analogue for quantitative analysis. Our conditions were optimised to obtain the outstanding limit of detection (LOD) of 1 fmol per sample (30 mu L) for LC-MS/MS and 0.75 pmol per sample (200 mu l) for LC determination with fluorescence detection. We developed an extraction procedure to separate and concentrate (2E)-hexadecenal from biological samples for these measurements. To confirm our new methods, we analysed the (2E)-hexadecenal level of different cell lines and human plasma for the first time ever. Furthermore, we treated HT-29 cells with different concentrations of 4-deoxypyridoxine (DOP), which competitively inhibits pyridoxal-5-phosphate (P5P), an essential cofactor for SPL activity, and observed a significant decrease in (2E)-hexadecenal relative to the untreated cells.}, language = {en} } @article{PutraNeuberReichetzederetal.2014, author = {Putra, Sulistyo Emantoko Dwi and Neuber, Corinna and Reichetzeder, Christoph and Hocher, Berthold and Kleuser, Burkhard}, title = {Analysis of genomic DNA methylation levels in human placenta using liquid Chromatography-Electrospray ionization tandem mass spectrometry}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {33}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000358666}, pages = {945 -- 952}, year = {2014}, abstract = {Background: DNA-methylation is a common epigenetic tool which plays a crucial role in gene regulation and is essential for cell differentiation and embryonic development. The placenta is an important organ where gene activity can be regulated by epigenetic DNA modifications, including DNA methylation. This is of interest as, the placenta is the interface between the fetus and its environment, the mother. Exposure to environmental toxins and nutrition during pregnancy may alter DNA methylation of the placenta and subsequently placental function and as a result the phenotype of the offspring. The aim of this study was to develop a reliable method to quantify DNA methylation in large clinical studies. This will be a tool to analyze the degree of DNA methylation in the human placenta in relationship to clinical readouts. Methods: Liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MS) technique was used for the quantification of the 5dmC/dG ratio in placentas from 248 healthy pregnancies. We were able to demonstrate that this method is a reliable and stable way to determine global placental DNA methylation in large clinical trials. Results/Conclusion: The degree of placental DNA methylation seen in our pilot study varies substantially from 2\% to 5\%. The clinical implications of this variation need to be demonstrated in adequately powered large studies.}, language = {en} } @article{ReichetzederPutraPfabetal.2016, author = {Reichetzeder, Christoph and Putra, S. E. Dwi and Pfab, T. and Slowinski, T. and Neuber, Corinna and Kleuser, Burkhard and Hocher, Berthold}, title = {Increased global placental DNA methylation levels are associated with gestational diabetes}, series = {Clinical epigenetics}, volume = {8}, journal = {Clinical epigenetics}, publisher = {BioMed Central}, address = {London}, issn = {1868-7083}, doi = {10.1186/s13148-016-0247-9}, pages = {10}, year = {2016}, abstract = {Background: Gestational diabetes mellitus (GDM) is associated with adverse pregnancy outcomes. It is known that GDM is associated with an altered placental function and changes in placental gene regulation. More recent studies demonstrated an involvement of epigenetic mechanisms. So far, the focus regarding placental epigenetic changes in GDM was set on gene-specific DNA methylation analyses. Studies that robustly investigated placental global DNA methylation are lacking. However, several studies showed that tissue-specific alterations in global DNA methylation are independently associated with type 2 diabetes. Thus, the aim of this study was to characterize global placental DNA methylation by robustly measuring placental DNA 5-methylcytosine (5mC) content and to examine whether differences in placental global DNA methylation are associated with GDM. Methods: Global DNA methylation was quantified by the current gold standard method, LC-MS/MS. In total, 1030 placental samples were analyzed in this single-center birth cohort study. Results: Mothers with GDM displayed a significantly increased global placental DNA methylation (3.22 +/- 0.63 vs. 3.00 +/- 0.46 \%; p = 0.013; +/- SD). Bivariate logistic regression showed a highly significant positive correlation between global placental DNA methylation and the presence of GDM (p = 0.0009). Quintile stratification according to placental DNA 5mC levels revealed that the frequency of GDM was evenly distributed in quintiles 1-4 (2.9-5.3 \%), whereas the frequency in the fifth quintile was significantly higher (10.7 \%; p = 0.003). Bivariate logistic models adjusted for maternal age, BMI, ethnicity, recurrent miscarriages, and familiar diabetes predisposition clearly demonstrated an independent association between global placental DNA hypermethylation and GDM. Furthermore, an ANCOVA model considering known predictors of DNA methylation substantiated an independent association between GDM and placental DNA methylation. Conclusions: This is the first study that employed a robust quantitative assessment of placental global DNA methylation in over a thousand placental samples. The study provides large scale evidence that placental global DNA hypermethylation is associated with GDM, independent of established risk factors.}, language = {en} } @article{SchwiebsThomasKleuseretal.2017, author = {Schwiebs, Anja and Thomas, Dominique Jeanette and Kleuser, Burkhard and Pfeilschifter, Josef and Radeke, Heinfried H.}, title = {Nuclear translocation of SGPP-1 and decrease of SGPL-1 activity contribute to sphingolipid rheostat regulation of inflammatory dendritic cells}, series = {Mediators of inflammation}, journal = {Mediators of inflammation}, publisher = {Hindawi Publishing Corp.}, address = {London}, issn = {0962-9351}, doi = {10.1155/2017/5187368}, pages = {10}, year = {2017}, abstract = {A balanced sphingolipid rheostat is indispensable for dendritic cell function and survival and thus initiation of an immune response. Sphingolipid levels are dynamically maintained by the action of sphingolipid enzymes of which sphingosine kinases, S1P phosphatases (SGPP-1/2) and S1P lyase (SGPL-1), are pivotal in the balance of S1P and sphingosine levels. In this study, we present that SGPP-1 and SGPL-1 are regulated in inflammatory dendritic cells and contribute to S1P fate. TLR-dependent activation caused SGPL-1 protein downregulation with subsequent decrease of enzymatic activity by two-thirds. In parallel, confocal fluorescence microscopy revealed that endogenous SGPP-1 was expressed in nuclei of naive dendritic cells and was translocated into the cytoplasmatic compartment upon inflammatory stimulation resulting in dephosphorylation of S1P. Mass spectrometric determination showed that a part of the resulting sphingosine was released from the cell, increasing extracellular levels. Another route of diminishing intracellular S1P was possibly taken by its export via ATP-binding cassette transporter C1 which was upregulated in array analysis, while the S1P transporter, spinster homolog 2, was not relevant in dendritic cells. These investigations newly describe the sequential expression and localization of the endogenous S1P regulators SGPP-1 and SGPL-1 and highlight their contribution to the sphingolipid rheostat in inflammation.}, language = {en} } @article{GereckeMascherGottschalketal.2013, author = {Gerecke, Christian and Mascher, Conny and Gottschalk, Uwe and Kleuser, Burkhard and Scholtka, Bettina}, title = {Ultrasensitive detection of unknown colon cancer-initiating mutations using the example of the adenomatous polyposis coli gene}, series = {Cancer prevention research}, volume = {6}, journal = {Cancer prevention research}, number = {9}, publisher = {American Association for Cancer Research}, address = {Philadelphia}, issn = {1940-6207}, doi = {10.1158/1940-6207.CAPR-13-0145}, pages = {898 -- 907}, year = {2013}, abstract = {Detection of cancer precursors contributes to cancer prevention, for example, in the case of colorectal cancer. To record more patients early, ultrasensitive methods are required for the purpose of noninvasive precursor detection in body fluids. Our aim was to develop a method for enrichment and detection of known as well as unknown driver mutations in the Adenomatous polyposis coli (APC) gene. By coupled wild-type blocking (WTB) PCR and high-resolution melting (HRM), referred to as WTB-HRM, a minimum detection limit of 0.01\% mutant in excess wild-type was achieved according to as little as 1 pg mutated DNA in the assay. The technique was applied to 80 tissue samples from patients with colorectal cancer (n = 17), adenomas (n = 50), serrated lesions (n = 8), and normal mucosa (n = 5). Any kind of known and unknown APC mutations (deletions, insertions, and base exchanges) being situated inside the mutation cluster region was distinguishable from wild-type DNA. Furthermore, by WTB-HRM, nearly twice as many carcinomas and 1.5 times more precursor lesions were identified to be mutated in APC, as compared with direct sequencing. By analyzing 31 associated stool DNA specimens all but one of the APC mutations could be recovered. Transferability of the WTB-HRM method to other genes was proven using the example of KRAS mutation analysis. In summary, WTB-HRM is a new approach for ultrasensitive detection of cancer-initiating mutations. In this sense, it appears especially applicable for noninvasive detection of colon cancer precursors in body fluids with excess wild-type DNA like stool. Cancer Prev Res; 6(9); 898-907. (C) 2013 AACR.}, language = {en} } @article{GereckeScholtkaLoewensteinetal.2015, author = {Gerecke, Christian and Scholtka, Bettina and Loewenstein, Yvonne and Fait, Isabel and Gottschalk, Uwe and Rogoll, Dorothee and Melcher, Ralph and Kleuser, Burkhard}, title = {Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer}, series = {Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft}, volume = {141}, journal = {Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft}, number = {12}, publisher = {Springer}, address = {New York}, issn = {0171-5216}, doi = {10.1007/s00432-015-1972-8}, pages = {2097 -- 2107}, year = {2015}, abstract = {Epigenetic silencing of tumor suppressor genes is involved in early transforming events and has a high impact on colorectal carcinogenesis. Likewise, colon cancers that derive from chronically inflamed bowel diseases frequently exhibit epigenetic changes. But there is little data about epigenetic aberrations causing colorectal cancer in chronically inflamed tissue. The aim of the present study was to evaluate the aberrant gain of methylation in the gene promoters of VIM, TFPI2 and ITGA4 as putative early markers in the development from inflamed tissue via precancerous lesions toward colorectal cancer. Initial screening of different cancer cell lines by using methylation-specific PCR revealed a putative colon cancer-specific methylation pattern. Additionally, a demethylation assay was performed to investigate the methylation-dependent gene silencing of ITGA4. The candidate markers were analyzed in colonic tissue specimens from patients with colorectal cancer (n = 15), adenomas (n = 76), serrated lesions (n = 13), chronic inflammation (n = 10) and normal mucosal samples (n = 9). A high methylation frequency of VIM (55.6 \%) was observed in normal colon tissue, whereas ITGA4 and TFPI2 were completely unmethylated in controls. A significant gain of methylation frequency with progression of disease as well as an age-dependent effect was detectable for TFPI2. ITGA4 methylation frequency was high in precancerous and cancerous tissues as well as in inflammatory bowel diseases (IBD). The already established methylation marker VIM does not permit a specific and sensitive discrimination of healthy and neoplastic tissue. The methylation markers ITGA4 and TFPI2 seem to be suitable risk markers for inflammation-associated colon cancer.}, language = {en} } @article{SchraplauScheweNeuschaeferRubeetal.2015, author = {Schraplau, Anne and Schewe, Bettina and Neusch{\"a}fer-Rube, Frank and Ringel, Sebastian and Neuber, Corinna and Kleuser, Burkhard and P{\"u}schel, Gerhard Paul}, title = {Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital}, series = {Toxicology}, volume = {328}, journal = {Toxicology}, publisher = {Elsevier}, address = {Clare}, issn = {0300-483X}, doi = {10.1016/j.tox.2014.12.004}, pages = {21 -- 28}, year = {2015}, abstract = {Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. (C) 2014 Elsevier Ireland Ltd. All rights reserved.}, language = {en} } @article{HalilbasicFuerstHeidenetal.2020, author = {Halilbasic, Emina and Fuerst, Elisabeth and Heiden, Denise and Japtok, Lukasz and Diesner, Susanne C. and Trauner, Michael and Kulu, Askin and Jaksch, Peter and Hoetzenecker, Konrad and Kleuser, Burkhard and Kazemi-Shirazi, Lili and Untersmayr, Eva}, title = {Plasma levels of the bioactive sphingolipid metabolite S1P in adult cystic fibrosis patients}, series = {Nutrients}, volume = {12}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu12030765}, pages = {11}, year = {2020}, abstract = {Recent research has linked sphingolipid (SL) metabolism with cystic fibrosis transmembrane conductance regulator (CFTR) activity, affecting bioactive lipid mediator sphingosine-1-phosphate (S1P). We hypothesize that loss of CFTR function in cystic fibrosis (CF) patients influenced plasma S1P levels. Total and unbound plasma S1P levels were measured in 20 lung-transplanted adult CF patients and 20 healthy controls by mass spectrometry and enzyme-linked immunosorbent assay (ELISA). S1P levels were correlated with CFTR genotype, routine laboratory parameters, lung function and pathogen colonization, and clinical symptoms. Compared to controls, CF patients showed lower unbound plasma S1P, whereas total S1P levels did not differ. A positive correlation of total and unbound S1P levels was found in healthy controls, but not in CF patients. Higher unbound S1P levels were measured in Delta F508-homozygous compared to Delta F508-heterozygous CF patients (p = 0.038), accompanied by higher levels of HDL in Delta F508-heterozygous patients. Gastrointestinal symptoms were more common in Delta F508 heterozygotes compared to Delta F508 homozygotes. This is the first clinical study linking plasma S1P levels with CFTR function and clinical presentation in adult CF patients. Given the emerging role of immunonutrition in CF, our study might pave the way for using S1P as a novel biomarker and nutritional target in CF.}, language = {en} } @article{WetzelScholtkaGereckeetal.2020, author = {Wetzel, Alexandra Nicole and Scholtka, Bettina and Gerecke, Christian and Kleuser, Burkhard}, title = {Epigenetic histone modulation contributes to improvements in inflammatory bowel disease via EBI3}, series = {Cellular and molecular life sciences}, volume = {77}, journal = {Cellular and molecular life sciences}, number = {23}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1420-682X}, doi = {10.1007/s00018-020-03451-9}, pages = {5017 -- 5030}, year = {2020}, abstract = {Ulcerative colitis (UC) is characterized by relapsing-remitting inflammatory episodes paralleled by varying cytokine levels, suggesting that switching epigenetic processes might be involved. However, the epigenetic impact on cytokine levels in colitis is mostly unexplored. The heterodimeric interleukin (IL)-12 cytokine family have various functions in both pro- and anti-inflammatory processes. The family member IL-35 (EBI3/IL-12p35) was recently reported to play an anti-inflammatory role in UC. Therefore, we aimed to investigate a possible epigenetic regulation of the IL-35 subunits in vitro and in vivo, and to examine the epigenetic targeting of EBI3 expression as a therapeutic option for UC. Exposure to either the pro-inflammatory TNF alpha or to histone deacetylase inhibitors (HDACi) significantly increased EBI3 expression in Human Colon Epithelial Cells (HCEC) generated from healthy tissue. When applied in combination, a drastic upregulation of EBI3 expression occurred, suggesting a synergistic mechanism. Consequently, IL-35 was increased as well. In vivo, the intestines of HDACi-treated wild-type mice exhibited reduced pathological signs of colitis compared to non-treated colitic mice. However, the improvement by HDACi treatment was completely lost in Ebi3-deficient mice (Ebi3(-/-)). In fact, HDACi appeared to exacerbate the disease phenotype in Ebi3(-/-). In conclusion, our results reveal that under inflammatory conditions, EBI3 is upregulated by the epigenetic mechanism of histone acetylation. The in vivo data show that the deficiency of EBI3 plays a key role in colitis manifestation. Concordantly, our data suggest that conditions promoting histone acetylation, such as upon HDACi application, improve colitis by a mechanism involving the local formation of the anti-inflammatory cytokine IL-35.}, language = {en} } @article{LotinunKivirantaMatsubaraetal.2013, author = {Lotinun, Sutada and Kiviranta, Riku and Matsubara, Takuma and Alzate, Jorge A. and Neff, Lynn and L{\"u}th, Anja and Koskivirta, Ilpo and Kleuser, Burkhard and Vacher, Jean and Vuorio, Eero and Horne, William C. and Baron, Roland}, title = {Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation}, series = {The journal of clinical investigation}, volume = {123}, journal = {The journal of clinical investigation}, number = {2}, publisher = {American Society for Clinical Investigation}, address = {Ann Arbor}, issn = {0021-9738}, doi = {10.1172/JCI64840}, pages = {666 -- 681}, year = {2013}, abstract = {Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-l-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P(1,3) receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P.}, language = {en} } @article{BhabakKleuserHuwileretal.2013, author = {Bhabak, Krishna P. and Kleuser, Burkhard and Huwiler, Andrea and Arenz, Christoph}, title = {Effective inhibition of acid and neutral ceramidases by novel B-13 and LCL-464 analogues}, series = {Bioorganic \& medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines}, volume = {21}, journal = {Bioorganic \& medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0968-0896}, doi = {10.1016/j.bmc.2012.12.014}, pages = {874 -- 882}, year = {2013}, abstract = {Induction of apoptosis mediated by the inhibition of ceramidases has been shown to enhance the efficacy of conventional chemotherapy in several cancer models. Among the inhibitors of ceramidases reported in the literature, B-13 is considered as a lead compound having good in vitro potency towards acid ceramidase. Furthermore, owing to the poor activity of B-13 on lysosoamal acid ceramidase in living cells, LCL-464 a modified derivative of B-13 containing a basic omega-amino group at the fatty acid was reported to have higher potency towards lysosomal acid ceramidase in living cells. In a search for more potent inhibitors of ceramidases, we have designed a series of compounds with structural modifications of B-13 and LCL-464. In this study, we show that the efficacy of B-13 in vitro as well as in intact cells can be enhanced by suitable modification of functional groups. Furthermore, a detailed SAR investigation on LCL-464 analogues revealed novel promising inhibitors of aCDase and nCDase. In cell culture studies using the breast cancer cell line MDA-MB-231, some of the newly developed compounds elevated endogenous ceramide levels and in parallel, also induced apoptotic cell death. In summary, this study shows that structural modification of the known ceramidase inhibitors B-13 and LCL-464 generates more potent ceramidase inhibitors that are active in intact cells and not only elevates the cellular ceramide levels, but also enhances cell death.}, language = {en} } @article{GulbinsPalmadaReicheletal.2013, author = {Gulbins, Erich and Palmada, Monica and Reichel, Martin and Lueth, Anja and Boehmer, Christoph and Amato, Davide and Mueller, Christian P. and Tischbirek, Carsten H. and Groemer, Teja W. and Tabatabai, Ghazaleh and Becker, Katrin Anne and Tripal, Philipp and Staedtler, Sven and Ackermann, Teresa F. and van Brederode, Johannes and Alzheimer, Christian and Weller, Michael and Lang, Undine E. and Kleuser, Burkhard and Grassme, Heike and Kornhuber, Johannes}, title = {Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs}, series = {Nature medicine}, volume = {19}, journal = {Nature medicine}, number = {7}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1078-8956}, doi = {10.1038/nm.3214}, pages = {934 -- +}, year = {2013}, abstract = {Major depression is a highly prevalent severe mood disorder that is treated with antidepressants. The molecular targets of antidepressants require definition. We investigated the role of the acid sphingomyelinase (Asm)-ceramide system as a target for antidepressants. Therapeutic concentrations of the antidepressants amitriptyline and fluoxetine reduced Asm activity and ceramide concentrations in the hippocampus, increased neuronal proliferation, maturation and survival and improved behavior in mouse models of stress-induced depression. Genetic Asm deficiency abrogated these effects. Mice overexpressing Asm, heterozygous for acid ceramidase, treated with blockers of ceramide metabolism or directly injected with C16 ceramide in the hippocampus had higher ceramide concentrations and lower rates of neuronal proliferation, maturation and survival compared with controls and showed depression-like behavior even in the absence of stress. The decrease of ceramide abundance achieved by antidepressant-mediated inhibition of Asm normalized these effects. Lowering ceramide abundance may thus be a central goal for the future development of antidepressants.}, language = {en} } @article{BoehmFloesserErmleretal.2013, author = {B{\"o}hm, Andreas and Fl{\"o}ßer, Anja and Ermler, Swen and Fender, Anke C. and L{\"u}th, Anja and Kleuser, Burkhard and Schr{\"o}r, Karsten and Rauch, Bernhard H.}, title = {Factor-Xa-induced mitogenesis and migration require sphingosine kinase activity and S1P formation in human vascular smooth muscle cells}, series = {Cardiovascular research}, volume = {99}, journal = {Cardiovascular research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0008-6363}, doi = {10.1093/cvr/cvt112}, pages = {505 -- 513}, year = {2013}, abstract = {Sphingosine-1-phosphate (S1P) is a cellular signalling lipid generated by sphingosine kinase-1 (SPHK1). The aim of the study was to investigate whether the activated coagulation factor-X (FXa) regulates SPHK1 transcription and the formation of S1P and subsequent mitogenesis and migration of human vascular smooth muscle cells (SMC). FXa induced a time- (36 h) and concentration-dependent (330 nmol/L) increase of SPHK1 mRNA and protein expression in human aortic SMC, resulting in an increased synthesis of S1P. FXa-stimulated transcription of SPHK1 was mediated by the protease-activated receptor-1 (PAR-1) and PAR-2. In human carotid artery plaques, expression of SPHK1 was observed at SMC-rich sites and was co-localized with intraplaque FX/FXa content. FXa-induced SPHK1 transcription was attenuated by inhibitors of Rho kinase (Y27632) and by protein kinase C (PKC) isoforms (GF109203X). In addition, FXa rapidly induced the activation of the small GTPase Rho A. Inhibition of signalling pathways which regulate SPHK1 expression, inhibition of its activity or siRNA-mediated SPHK1 knockdown attenuated the mitogenic and chemotactic response of human SMC to FXa. These data suggest that FXa induces SPHK1 expression and increases S1P formation independent of thrombin and that this involves the activation of Rho A and PKC signalling. In addition to its key function in coagulation, this direct effect of FXa on human SMC may increase cell proliferation and migration at sites of vessel injury and thereby contribute to the progression of vascular lesions.}, language = {en} } @article{ImeriFalleggerZivkovicetal.2014, author = {Imeri, Faik and Fallegger, Daniel and Zivkovic, Aleksandra and Schwalm, Stephanie and Enzmann, Gaby and Blankenbach, Kira and Heringdorf, Dagmar Meyer Zu and Homann, Thomas and Kleuser, Burkhard and Pfeilschifter, Josef and Engelhardt, Britta and Stark, Holger and Huwiler, Andrea}, title = {Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice}, series = {Neuropharmacology}, volume = {85}, journal = {Neuropharmacology}, publisher = {Elsevier}, address = {Oxford}, issn = {0028-3908}, doi = {10.1016/j.neuropharm.2014.05.012}, pages = {314 -- 327}, year = {2014}, abstract = {The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P(1) and S1P(3), but not S1P(2), receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNF alpha-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNF alpha-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KellerCatalaLehnenHuebneretal.2014, author = {Keller, Johannes and Catala-Lehnen, Philip and Huebner, Antje K. and Jeschke, Anke and Heckt, Timo and Lueth, Anja and Krause, Matthias and Koehne, Till and Albers, Joachim and Schulze, Jochen and Schilling, Sarah and Haberland, Michael and Denninger, Hannah and Neven, Mona and Hermans-Borgmeyer, Irm and Streichert, Thomas and Breer, Stefan and Barvencik, Florian and Levkau, Bodo and Rathkolb, Birgit and Wolf, Eckhard and Calzada-Wack, Julia and Neff, Frauke and Gailus-Durner, Valerie and Fuchs, Helmut and de Angelis, Martin Hrabe and Klutmann, Susanne and Tsourdi, Elena and Hofbauer, Lorenz C. and Kleuser, Burkhard and Chun, Jerold and Schinke, Thorsten and Amling, Michael}, title = {Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms6215}, pages = {13}, year = {2014}, abstract = {The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P(3). Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P(3)-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts.}, language = {en} } @article{SchmitzPotteckSchueppeletal.2012, author = {Schmitz, Elisabeth I. and Potteck, Henrik and Sch{\"u}ppel, Melanie and Manggau, Marianti and Wahydin, Elly and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P(3)}, series = {Molecular and cellular biochemistry : an international journal for chemical biology in health and disease}, volume = {371}, journal = {Molecular and cellular biochemistry : an international journal for chemical biology in health and disease}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0300-8177}, doi = {10.1007/s11010-012-1433-5}, pages = {165 -- 176}, year = {2012}, abstract = {Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NOaEuro cent) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NOaEuro cent-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NOaEuro cent. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NOaEuro cent. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NOaEuro cent formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.}, language = {en} } @article{BarceloCoblijnLauraMartindeAlmeidaetal.2011, author = {Barcelo-Coblijn, Gwendolyn and Laura Martin, Maria and de Almeida, Rodrigo F. M. and Antonia Noguera-Salva, Maria and Marcilla-Etxenike, Amaia and Guardiola-Serrano, Francisca and Lueth, Anja and Kleuser, Burkhard and Halver, John E. and Escriba, Pablo V.}, title = {Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {108}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {49}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1115484108}, pages = {19569 -- 19574}, year = {2011}, abstract = {The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30\%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.}, language = {en} } @article{ReichelHoenigLiebischetal.2015, author = {Reichel, Martin and Hoenig, Stefanie and Liebisch, Gerhard and L{\"u}th, Anja and Kleuser, Burkhard and Gulbins, Erich and Schmitz, Gerd and Kornhuber, Johannes}, title = {Alterations of plasma glycerophospholipid and sphingolipid species in male alcohol-dependent patients}, series = {Biochimica et biophysica acta : Molecular and cell biology of lipids}, volume = {1851}, journal = {Biochimica et biophysica acta : Molecular and cell biology of lipids}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1388-1981}, doi = {10.1016/j.bbalip.2015.08.005}, pages = {1501 -- 1510}, year = {2015}, abstract = {Background: Alcohol abuse is a major risk factor for somatic and neuropsychiatric diseases. Despite their potential clinical importance, little is known about the alterations of plasma glycerophospholipid (GPL) and sphingolipid (SPL) species associated with alcohol abuse. Methods: Plasma GPL and SPL species were quantified using electrospray ionization tandem mass spectrometry in samples from 23 male alcohol-dependent patients before and after detoxification, as well as from 20 healthy male controls. Results: A comparison of alcohol-dependent patients with controls revealed higher phosphatidylcholine (PC; P-value = 0.008) and phosphatidylinositol (PI; P-value = 0.001) concentrations in patients before detoxification, and higher PI (P-value = 0.001) and phosphatidylethanolamine (PE)-based plasmalogen (PEP; P-value = 0.003) concentrations after detoxification. Lysophosphatidylcholines (LPC) were increased by acute intoxication (P-value = 0.002). Sphingomyelin (SM) concentration increased during detoxification (P-value = 0.011). The concentration of SM 23:0 was lower in patients (P-value = 2.79 x 10(-5)), and the concentrations of ceramide Cer d18:1/16:0 and Cer d18:1/18:0 were higher in patients (P-value = 2.45 x 10(-5) and 3.73 x 10(-5)). Activity of lysosomal acid sphingomyelinase (ASM) in patients correlated positively with the concentrations of eight LPC species, while activity of secreted ASM was inversely correlated with several PE, PI and PC species, and positively correlated with the molar ratio of PC to SM (Pearson's r = 0.432; P-value = 0.039). Conclusion: Plasma concentrations of numerous GPL and SPL species were altered in alcohol-dependent patients. These molecules might serve as potential biomarkers to improve the diagnosis of patients and to indicate health risks associated with alcohol abuse. Our study further indicates that there are strong interactions between plasma GPL concentrations and SPL metabolism. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{SicKrausMadletal.2014, author = {Sic, Heiko and Kraus, Helene and Madl, Josef and Flittner, Karl-Andreas and von Muenchow, Audrey Lilly and Pieper, Kathrin and Rizzi, Marta and Kienzler, Anne-Kathrin and Ayata, Korcan and Rauer, Sebastian and Kleuser, Burkhard and Salzer, Ulrich and Burger, Meike and Zirlik, Katja and Lougaris, Vassilios and Plebani, Alessandro and Roemer, Winfried and Loeffler, Christoph and Scaramuzza, Samantha and Villa, Anna and Noguchi, Emiko and Grimbacher, Bodo and Eibel, Hermann}, title = {Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis}, series = {The journal of allergy and clinical immunology}, volume = {134}, journal = {The journal of allergy and clinical immunology}, number = {2}, publisher = {Elsevier}, address = {New York}, issn = {0091-6749}, doi = {10.1016/j.jaci.2014.01.037}, pages = {420 -- +}, year = {2014}, abstract = {Background: Five different G protein-coupled sphingosine-1-phosphate (S1P) receptors (S1P1-S1P5) regulate a variety of physiologic and pathophysiologic processes, including lymphocyte circulation, multiple sclerosis (MS), and cancer. Although B-lymphocyte circulation plays an important role in these processes and is essential for normal immune responses, little is known about S1P receptors in human B cells. Objective: To explore their function and signaling, we studied B-cell lines and primary B cells from control subjects, patients with leukemia, patients with S1P receptor inhibitor-treated MS, and patients with primary immunodeficiencies. Methods: S1P receptor expression was analyzed by using multicolor immunofluorescence microscopy and quantitative PCR. Transwell assays were used to study cell migration. S1P receptor internalization was visualized by means of time-lapse imaging with fluorescent S1P receptor fusion proteins expressed by using lentiviral gene transfer. B-lymphocyte subsets were characterized by means of flow cytometry and immunofluorescence microscopy. Results: Showing that different B-cell populations express different combinations of S1P receptors, we found that S1P1 promotes migration, whereas S1P4 modulates and S1P2 inhibits S1P1 signals. Expression of CD69 in activated B lymphocytes and B cells from patients with chronic lymphocytic leukemia inhibited S1P-induced migration. Studying B-cell lines, normal B lymphocytes, and B cells from patients with primary immunodeficiencies, we identified Bruton tyrosine kinase, beta-arrestin 2, LPS-responsive beige-like anchor protein, dedicator of cytokinesis 8, and Wiskott-Aldrich syndrome protein as critical signaling components downstream of S1P1. Conclusion: Thus S1P receptor signaling regulates human B-cell circulation and might be a factor contributing to the pathology of MS, chronic lymphocytic leukemia, and primary immunodeficiencies.}, language = {en} } @article{LiLuReichetzederetal.2016, author = {Li, Jian and Lu, Yong Ping and Reichetzeder, Christoph and Kalk, Philipp and Kleuser, Burkhard and Adamski, Jerzy and Hocher, Berthold}, title = {Maternal PCaaC38:6 is Associated With Preterm Birth - a Risk Factor for Early and Late Adverse Outcome of the Offspring}, series = {Journal of European public policy}, volume = {41}, journal = {Journal of European public policy}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000443428}, pages = {250 -- 257}, year = {2016}, abstract = {Background/Aims: Preterm birth (PTB) and low birth weight (LBW) significantly influence mortality and morbidity of the offspring in early life and also have long-term consequences in later life. A better understanding of the molecular mechanisms of preterm birth could provide new insights regarding putative preventive strategies. Metabolomics provides a powerful analytic tool to readout complex interactions between genetics, environment and health and may serve to identify relevant biomarkers. In this study, the association between 163 targeted maternal blood metabolites and gestational age was investigated in order to find candidate biomarkers for PTB. Methods: Five hundred twenty-three women were included into this observational study. Maternal blood was obtained before delivery. The concentration of 163 maternal serum metabolites was measured by flow injection tandem mass spectrometry. To find putative biomarkers for preterm birth, a three-step analysis was designed: bivariate correlation analysis followed by multivariable regression analysis and a comparison of mean values among gestational age groups. Results: Bivariate correlation analysis showed that 2 acylcarnitines (C16:2, C2), 1 amino acids (xLeu), 8 diacyl-PCs (PCaaC36:4, PCaaC38:4, PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, PCaaC40:6, PCaaC42:4), and 1 Acylalkyl-PCs (PCaeC40:5) were inversely correlated with gestational age. Multivariable regression analysis confounded for PTB history, maternal body mass index (BMI) before pregnancy, systolic blood pressure at the third trimester, and maternal body weight at the third trimester, showed that the diacyl-PC PCaaC38:6 was the only metabolite inversely correlated with gestational age. Conclusions: Maternal blood concentrations of PCaaC38:6 are independently associated with gestational age. (C) 2016 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{AhlbergRancanEppleetal.2016, author = {Ahlberg, Sebastian and Rancan, Fiorenza and Epple, Matthias and Loza, Kateryna and H{\"o}ppe, David and Lademann, J{\"u}rgen and Vogt, Annika and Kleuser, Burkhard and Gerecke, Christian and Meinke, Martina C.}, title = {Comparison of different methods to study effects of silver nanoparticles on the pro- and antioxidant status of human keratinocytes and fibroblasts}, series = {Methods : focusing on rapidly developing techniques}, volume = {109}, journal = {Methods : focusing on rapidly developing techniques}, publisher = {Elsevier}, address = {San Diego}, issn = {1046-2023}, doi = {10.1016/j.ymeth.2016.05.015}, pages = {55 -- 63}, year = {2016}, language = {en} } @article{HoenzkeGereckeElpeltetal.2016, author = {H{\"o}nzke, Stefan and Gerecke, Christian and Elpelt, Anja and Zhang, Nan and Unbehauen, Michael and Kral, Vivian and Fleige, Emanuel and Paulus, Florian and Haag, Rainer and Sch{\"a}fer-Korting, Monika and Kleuser, Burkhard and Hedtrich, Sarah}, title = {Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing}, series = {Journal of controlled release}, volume = {242}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2016.06.030}, pages = {50 -- 63}, year = {2016}, abstract = {Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester-and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNF alpha supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{SahleBalzusGereckeetal.2016, author = {Sahle, Fitsum Feleke and Balzus, Benjamin and Gerecke, Christian and Kleuser, Burkhard and Bodmeier, Roland}, title = {Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential}, series = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, volume = {92}, journal = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0928-0987}, doi = {10.1016/j.ejps.2016.07.004}, pages = {98 -- 109}, year = {2016}, abstract = {pH-sensitive nanoparticles which release in a controlled fashion on the skin or dissolve in the hair follicle could significantly improve treatment effectiveness and make transfollicular drug delivery a success. Dexamethasone-loaded Eudragit L 100 nanoparticles were prepared by nanoprecipitation from an organic drug-polymer solution. Their toxicity potential was assessed using isolated human fibroblasts. pH-dependent swelling and erosion kinetics of the nanoparticles were investigated by dynamic light scattering and viscosity measurements and its effect on drug release was assessed in vitro with Franz diffusion cells. Stable, 100-550 nm-sized dexamethasone-loaded Eudragit L 100 nanoparticles with drug loading capacity and entrapment efficiency as high as 83\% and 85\%, respectively, were obtained by using polyvinyl alcohol as a stabilizer and ethanol as organic solvent The nanoparticles showed little or no toxicity on isolated normal human fibroblasts. Dexamethasone existed in the nanoparticles as solid solution or in amorphous form. The nanoparticles underwent extensive swelling and slow drug release in media with a low buffer capacity (as low as 10 mM) and a higher pH or at a pH close to the dissolution pH of the polymer (pH 6) and a higher buffer capacity. In 40 mM buffer and above pH 6.8, the nanoparticles eroded fast or dissolved completely and thus released the drug rapidly. pH-sensitive nanoparticles which potentially release in a controlled manner on the stratum corneum but dissolve in the hair follicle could be prepared. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{WallmeyerDietertSochorovaetal.2017, author = {Wallmeyer, Leonie and Dietert, Kristina and Sochorova, Michaela and Gruber, Achim D. and Kleuser, Burkhard and Vavrova, Katerina and Hedtrich, Sarah}, title = {TSLP is a direct trigger for T cell migration in filaggrin-deficient skin equivalents}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-00670-2}, pages = {12}, year = {2017}, abstract = {Mutations in the gene encoding for filaggrin (FLG) are major predisposing factors for atopic dermatitis (AD). Besides genetic predisposition, immunological dysregulations considerably contribute to its pathophysiology. For example, thymic stromal lymphopoietin (TSLP) is highly expressed in lesional atopic skin and significantly contributes to the pathogenesis of AD by activating dendritic cells that then initiate downstream effects on, for example, T cells. However, little is known about the direct interplay between TSLP, filaggrin-deficient skin and other immune cells such as T lymphocytes. In the present study, FLG knockdown skin equivalents, characterised by intrinsically high TSLP levels, were exposed to activated CD4(+) T cells. T cell exposure resulted in an inflammatory phenotype of the skin equivalents. Furthermore, a distinct shift from a Th1/Th17 to a Th2/Th22 profile was observed following exposure of T cells to filaggrin-deficient skin equivalents. Interestingly, TSLP directly stimulated T cell migration exclusively in filaggrin-deficient skin equivalents even in the absence of dendritic cells, indicating a hitherto unknown role of TSLP in the pathogenesis of AD.}, language = {en} } @article{ZhangSaidWischkeetal.2017, author = {Zhang, Nan and Said, Andre and Wischke, Christian and Kral, Vivian and Brodwolf, Robert and Volz, Pierre and Boreham, Alexander and Gerecke, Christian and Li, Wenzhong and Neffe, Axel T. and Kleuser, Burkhard and Alexiev, Ulrike and Lendlein, Andreas and Sch{\"a}fer-Korting, Monika}, title = {Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.10.019}, pages = {66 -- 75}, year = {2017}, abstract = {Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1\% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.}, language = {en} } @article{StepanovskaZivkovicEnzmannetal.2020, author = {Stepanovska, Bisera and Zivkovic, Aleksandra and Enzmann, Gaby and Tietz, Silvia and Homann, Thomas and Kleuser, Burkhard and Engelhardt, Britta and Stark, Holger and Huwiler, Andrea}, title = {Morpholino analogues of fingolimod as novel and selective S1P1 ligands with in vivo efficacy in a mouse model of experimental antigen-induced encephalomyelitis}, series = {International journal of molecular sciences}, volume = {21}, journal = {International journal of molecular sciences}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186463}, pages = {17}, year = {2020}, abstract = {Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease of the central nervous system (CNS) which is associated with lower life expectancy and disability. The experimental antigen-induced encephalomyelitis (EAE) in mice is a useful animal model of MS, which allows exploring the etiopathogenetic mechanisms and testing novel potential therapeutic drugs. A new therapeutic paradigm for the treatment of MS was introduced in 2010 through the sphingosine 1-phosphate (S1P) analogue fingolimod (FTY720, Gilenya(R)), which acts as a functional S1P(1) antagonist on T lymphocytes to deplete these cells from the blood. In this study, we synthesized two novel structures, ST-1893 and ST-1894, which are derived from fingolimod and chemically feature a morpholine ring in the polar head group. These compounds showed a selective S1P(1) activation profile and a sustained S1P(1) internalization in cultures of S1P(1)-overexpressing Chinese hamster ovary (CHO)-K1 cells, consistent with a functional antagonism. In vivo, both compounds induced a profound lymphopenia in mice. Finally, these substances showed efficacy in the EAE model, where they reduced clinical symptoms of the disease, and, on the molecular level, they reduced the T-cell infiltration and several inflammatory mediators in the brain and spinal cord. In summary, these data suggest that S1P(1)-selective compounds may have an advantage over fingolimod and siponimod, not only in MS but also in other autoimmune diseases.}, language = {en} } @article{SchoenauerLarpinBabiychuketal.2019, author = {Schoenauer, Roman and Larpin, Yu and Babiychuk, Eduard B. and Drucker, Patrick and Babiychuk, Viktoriia S. and Avota, Elita and Schneider-Schaulies, Sibylle and Schumacher, Fabian and Kleuser, Burkhard and Koffel, Rene and Draeger, Annette}, title = {Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {1}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.201800033R}, pages = {275 -- 285}, year = {2019}, abstract = {Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drucker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Koffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.}, language = {en} } @article{SamahaHamdoCongetal.2020, author = {Samaha, Doaa and Hamdo, Housam H. and Cong, Xiaojing and Schumacher, Fabian and Banhart, Sebastian and Aglar, {\"O}znur and M{\"o}ller, Heiko Michael and Heuer, Dagmar and Kleuser, Burkhard and Saied, Essa M. and Arenz, Christoph}, title = {Liposomal FRET assay identifies potent drug-like inhibitors of the Ceramide Transport Protein (CERT)}, series = {Chemistry - a European journal}, volume = {26}, journal = {Chemistry - a European journal}, number = {70}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202003283}, pages = {16616 -- 16621}, year = {2020}, abstract = {Ceramide transfer protein (CERT) mediates non-vesicular transfer of ceramide from endoplasmic reticulum to Golgi apparatus and thus catalyzes the rate-limiting step of sphingomyelin biosynthesis. Usually, CERT ligands are evaluated in tedious binding assays or non-homogenous transfer assays using radiolabeled ceramides. Herein, a facile and sensitive assay for CERT, based on Forster resonance energy transfer (FRET), is presented. To this end, we mixed donor and acceptor vesicles, each containing a different fluorescent ceramide species. By CERT-mediated transfer of fluorescent ceramide, a FRET system was established, which allows readout in 96-well plate format, despite the high hydrophobicity of the components. Screening of a 2 000 compound library resulted in two new potent CERT inhibitors. One is approved for use in humans and one is approved for use in animals. Evaluation of cellular activity by quantitative mass spectrometry and confocal microscopy showed inhibition of ceramide trafficking and sphingomyelin biosynthesis.}, language = {en} } @article{CollenburgWalterBurgertetal.2016, author = {Collenburg, Lena and Walter, Tim and Burgert, Anne and Mueller, Nora and Seibel, Juergen and Japtok, Lukasz and Kleuser, Burkhard and Sauer, Markus and Schneider-Schaulies, Sibylle}, title = {A Functionalized Sphingolipid Analogue for Studying Redistribution during Activation in Living T Cells}, series = {The journal of immunology}, volume = {196}, journal = {The journal of immunology}, publisher = {American Assoc. of Immunologists}, address = {Bethesda}, issn = {0022-1767}, doi = {10.4049/jimmunol.1502447}, pages = {3951 -- 3962}, year = {2016}, abstract = {Sphingolipids are major components of the plasma membrane. In particular, ceramide serves as an essential building hub for complex sphingolipids, but also as an organizer of membrane domains segregating receptors and signalosomes. Sphingomyelin breakdown as a result of sphingomyelinase activation after ligation of a variety of receptors is the predominant source of ceramides released at the plasma membrane. This especially applies to T lymphocytes where formation of ceramide-enriched membrane microdomains modulates TCR signaling. Because ceramide release and redistribution occur very rapidly in response to receptor ligation, novel tools to further study these processes in living T cells are urgently needed. To meet this demand, we synthesized nontoxic, azido-functionalized ceramides allowing for bio-orthogonal click-reactions to fluorescently label incorporated ceramides, and thus investigate formation of ceramide-enriched domains. Azido-functionalized C-6-ceramides were incorporated into and localized within plasma membrane microdomains and proximal vesicles in T cells. They segregated into clusters after TCR, and especially CD28 ligation, indicating efficient sorting into plasma membrane domains associated with T cell activation; this was abolished upon sphingomyelinase inhibition. Importantly, T cell activation was not abrogated upon incorporation of the compound, which was efficiently excluded from the immune synapse center as has previously been seen in Ab-based studies using fixed cells. Therefore, the functionalized ceramides are novel, highly potent tools to study the subcellular redistribution of ceramides in the course of T cell activation. Moreover, they will certainly also be generally applicable to studies addressing rapid stimulation-mediated ceramide release in living cells.}, language = {en} } @article{SolgerKunzFinketal.2019, author = {Solger, Franziska and Kunz, Tobias C. and Fink, Julian and Paprotka, Kerstin and Pfister, Pauline and Hagen, Franziska and Schumacher, Fabian and Kleuser, Burkhard and Seibel, J{\"u}rgen and Rudel, Thomas}, title = {A role of sphingosine in the intracellular survival of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00215}, pages = {12}, year = {2019}, abstract = {Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells.}, language = {en} } @article{DerakhshaniKurzJaptoketal.2019, author = {Derakhshani, Shaghayegh and Kurz, Andreas and Japtok, Lukasz and Schumacher, Fabian and Pilgram, Lisa and Steinke, Maria and Kleuser, Burkhard and Sauer, Markus and Schneider-Schaulies, Sibylle and Avota, Elita}, title = {Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium}, series = {Frontiers in immunology}, volume = {10}, journal = {Frontiers in immunology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.01294}, pages = {14}, year = {2019}, abstract = {Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.}, language = {en} } @article{FinkSchumacherSchlegeletal.2021, author = {Fink, Julian and Schumacher, Fabian and Schlegel, Jan and Stenzel, Philipp and Wigger, Dominik and Sauer, Markus and Kleuser, Burkhard and Seibel, J{\"u}rgen}, title = {Azidosphinganine enables metabolic labeling and detection of sphingolipid de novo synthesis}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {19}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/d0ob02592e}, pages = {2203 -- 2212}, year = {2021}, abstract = {Here were report the combination of biocompatible click chemistry of omega-azidosphinganine with fluorescence microscopy and mass spectrometry as a powerful tool to elaborate the sphingolipid metabolism. The azide probe was efficiently synthesized over 13 steps starting from l-serine in an overall yield of 20\% and was used for live-cell fluorescence imaging of the endoplasmic reticulum in living cells by bioorthogonal click reaction with a DBCO-labeled fluorophore revealing that the incorporated analogue is mainly localized in the endoplasmic membrane like the endogenous species. A LC-MS(/MS)-based microsomal in vitro assay confirmed that omega-azidosphinganine mimics the natural species enabling the identification and analysis of metabolic breakdown products of sphinganine as a key starting intermediate in the complex sphingolipid biosynthetic pathways. Furthermore, the sphinganine-fluorophore conjugate after click reaction was enzymatically tolerated to form its dihydroceramide and ceramide metabolites. Thus, omega-azidosphinganine represents a useful biofunctional tool for metabolic investigations both by in vivo fluorescence imaging of the sphingolipid subcellular localization in the ER and by in vitro high-resolution mass spectrometry analysis. This should reveal novel insights of the molecular mechanisms sphingolipids and their processing enzymes have e.g. in infection.}, language = {en} } @article{NaserKadowSchumacheretal.2021, author = {Naser, Eyad and Kadow, Stephanie and Schumacher, Fabian and Mohamed, Zainelabdeen H. and Kappe, Christian and Hessler, Gabriele and Pollmeier, Barbara and Kleuser, Burkhard and Arenz, Christoph and Becker, Katrin Anne and Gulbins, Erich and Carpinteiro, Alexander}, title = {Characterization of the small molecule ARC39}, series = {Journal of Lipid Research}, volume = {61}, journal = {Journal of Lipid Research}, number = {6}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1539-7262}, doi = {10.1194/jlr.RA120000682}, pages = {896 -- 910}, year = {2021}, abstract = {Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90\%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.}, language = {en} } @article{LangBohnBhatetal.2020, author = {Lang, Judith and Bohn, Patrick and Bhat, Hilal and Jastrow, Holger and Walkenfort, Bernd and Cansiz, Feyza and Fink, Julian and Bauer, Michael and Schumacher, Fabian and Kleuser, Burkhard and Lang, Karl S.}, title = {Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-15072-8}, pages = {1 -- 15}, year = {2020}, abstract = {Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1(-/-) mice results in replication of HSV-1 and Asah1(-/-) mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.}, language = {en} } @article{WalterCollenburgJaptoketal.2016, author = {Walter, T. and Collenburg, Lena and Japtok, Lukasz and Kleuser, Burkhard and Schneider-Schaulies, Sibylle and Mueller, N. and Becam, Jerome and Schubert-Unkmeir, A. and Kong, J. N. and Bieberich, Erhard and Seibel, J.}, title = {Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells}, series = {Chemical communications}, volume = {52}, journal = {Chemical communications}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c6cc02879a}, pages = {8612 -- 8614}, year = {2016}, abstract = {The synthesis and biological evaluation of azido-N-oleoyl serinol is reported. It mimicks biofunctional lipid ceramides and has shown to be capable of click reactions for cell membrane imaging in Jurkat and human brain microvascular endothelial cells.}, language = {en} } @article{GereckeEdlichGiulbudagianetal.2017, author = {Gerecke, Christian and Edlich, Alexander and Giulbudagian, Michael and Schumacher, Fabian and Zhang, Nan and Said, Andre and Yealland, Guy and Lohan, Silke B. and Neumann, Falko and Meinke, Martina C. and Ma, Nan and Calderon, Marcelo and Hedtrich, Sarah and Schaefer-Korting, Monika and Kleuser, Burkhard}, title = {Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes}, series = {Nanotoxicology}, volume = {11}, journal = {Nanotoxicology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1743-5390}, doi = {10.1080/17435390.2017.1292371}, pages = {267 -- 277}, year = {2017}, abstract = {Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery.}, language = {en} } @article{WetzelScholtkaSchumacheretal.2021, author = {Wetzel, Alexandra Nicole and Scholtka, Bettina and Schumacher, Fabian and Rawel, Harshadrai Manilal and Geisend{\"o}rfer, Birte and Kleuser, Burkhard}, title = {Epigenetic DNA methylation of EBI3 modulates human interleukin-35 formation via NFkB signaling}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22105329}, pages = {21}, year = {2021}, abstract = {Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein-Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNF alpha led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NF kappa B signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESIMS/MS analysis of DAC/TNF alpha-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNF alpha-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis.}, language = {en} } @article{GiulbudagianHoenzkeBergueiroetal.2018, author = {Giulbudagian, Michael and H{\"o}nzke, Stefan and Bergueiro, Juli{\´a}n and I{\c{s}}{\i}k, Doğu{\c{s}} and Schumacher, Fabian and Saeidpour, Siavash and Lohan, Silke and Meinke, Martina and Teutloff, Christian and Sch{\"a}fer-Korting, Monika and Yealland, Guy and Kleuser, Burkhard and Hedtrich, Sarah and Calder{\´o}n, Marcelo}, title = {Enhanced topical delivery of dexamethasone by beta-cyclodextrin decorated thermoresponsive nanogels}, series = {Nanoscale}, volume = {10}, journal = {Nanoscale}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c7nr04480a}, pages = {469 -- 479}, year = {2018}, abstract = {Highly hydrophilic, responsive nanogels are attractive as potential systems for the topical delivery of bioactives encapsulated in their three-dimensional polymeric scaffold. Yet, these drug carrier systems suffer from drawbacks for efficient delivery of hydrophobic drugs. Addressing this, β-cyclodextrin (βCD) could be successfully introduced into the drug carrier systems by exploiting its unique affinity toward dexamethasone (DXM) as well as its role as topical penetration enhancer. The properties of βCD could be combined with those of thermoresponsive nanogels (tNGs) based on dendritic polyglycerol (dPG) as a crosslinker and linear thermoresponsive polyglycerol (tPG) inducing responsiveness to temperature changes. Electron paramagnetic resonance (EPR) studies localized the drug within the hydrophobic cavity of βCD by differences in its mobility and environmental polarity. In fact, the fabricated carriers combining a particulate delivery system with a conventional penetration enhancer, resulted in an efficient delivery of DXM to the epidermis and the dermis of human skin ex vivo (enhancement compared to commercial DXM cream: ∼2.5 fold in epidermis, ∼30 fold in dermis). Furthermore, DXM encapsulated in βCD tNGs applied to skin equivalents downregulated the expression of proinflammatory thymic stromal lymphopoietin (TSLP) and outperformed a commercially available DXM cream.}, language = {en} } @article{BeckmannKadowSchumacheretal.2018, author = {Beckmann, Nadine and Kadow, Stephanie and Schumacher, Fabian and Goethert, Joachim R. and Kesper, Stefanie and Draeger, Annette and Schulz-Schaeffer, Walter J. and Wang, Jiang and Becker, Jan U. and Kramer, Melanie and Kuehn, Claudine and Kleuser, Burkhard and Becker, Katrin Anne and Gulbins, Erich and Carpinteiro, Alexander}, title = {Pathological manifestations of Farber disease in a new mouse model}, series = {Biological chemistry}, volume = {399}, journal = {Biological chemistry}, number = {10}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2018-0170}, pages = {1183 -- 1202}, year = {2018}, abstract = {Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.}, language = {en} } @article{MeinersPalmieriKlopfleischetal.2019, author = {Meiners, Jana and Palmieri, Vittoria and Klopfleisch, Robert and Ebel, Jana-Fabienne and Japtok, Lukasz and Schumacher, Fabian and Yusuf, Ayan Mohamud and Becker, Katrin Anne and Z{\"o}ller, Julia and Hose, Matthias and Kleuser, Burkhard and Hermann, Dirk Matthias and Kolesnick, Richard N. and Buer, Jan and Hansen, Wiebke and Westendorf, Astrid M.}, title = {Intestinal acid sphingomyelinase protects from severe Pathogen-Driven Colitis}, series = {Frontiers in immunology}, volume = {10}, journal = {Frontiers in immunology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.01386}, pages = {14}, year = {2019}, abstract = {Inflammatory diseases of the gastrointestinal tract are emerging as a global problem with increased evidence and prevalence in numerous countries. A dysregulated sphingolipid metabolism occurs in patients with ulcerative colitis and is discussed to contribute to its pathogenesis. In the present study, we determined the impact of acid sphingomyelinase (Asm), which catalyzes the hydrolysis of sphingomyelin to ceramide, on the course of Citrobacter (C.) rodentium-driven colitis. C. rodentium is an enteric pathogen and induces colonic inflammation very similar to the pathology in patients with ulcerative colitis. We found that mice with Asm deficiency or Asm inhibition were strongly susceptible to C. rodentium infection. These mice showed increased levels of C. rodentium in the feces and were prone to bacterial spreading to the systemic organs. In addition, mice lacking Asm activity showed an uncontrolled inflammatory T(h)1 and T(h)17 response, which was accompanied by a stronger colonic pathology compared to infected wild type mice. These findings identified Asm as an essential regulator of mucosal immunity to the enteric pathogen C. rodentium.}, language = {en} } @article{HausmannZoschkeWolffetal.2019, author = {Hausmann, Christian and Zoschke, Christian and Wolff, Christopher and Darvin, Maxim E. and Sochorova, Michaela and Kovacik, Andrej and Wanjiku, Barbara and Schumacher, Fabian and Tigges, Julia and Kleuser, Burkhard and Lademann, Juergen and Fritsche, Ellen and Vavrova, Katerina and Ma, Nan and Schaefer-Korting, Monika}, title = {Fibroblast origin shapes tissue homeostasis, epidermal differentiation, and drug uptake}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-39770-6}, pages = {10}, year = {2019}, abstract = {Preclinical studies frequently lack predictive value for human conditions. Human cell-based disease models that reflect patient heterogeneity may reduce the high failure rates of preclinical research. Herein, we investigated the impact of primary cell age and body region on skin homeostasis, epidermal differentiation, and drug uptake. Fibroblasts derived from the breast skin of female 20- to 30-yearolds or 60- to 70-year-olds and fibroblasts from juvenile foreskin (<10 years old) were compared in cell monolayers and in reconstructed human skin (RHS). RHS containing aged fibroblasts differed from its juvenile and adult counterparts, especially in terms of the dermal extracellular matrix composition and interleukin-6 levels. The site from which the fibroblasts were derived appeared to alter fibroblast-keratinocyte crosstalk by affecting, among other things, the levels of granulocyte-macrophage colony-stimulating factor. Consequently, the epidermal expression of filaggrin and e-cadherin was increased in RHS containing breast skin fibroblasts, as were lipid levels in the stratum corneum. In conclusion, the region of the body from which fibroblasts are derived appears to affect the epidermal differentiation of RHS, while the age of the fibroblast donors determines the expression of proteins involved in wound healing. Emulating patient heterogeneity in preclinical studies might improve the treatment of age-related skin conditions.}, language = {en} } @article{NeuberSchumacherGulbinsetal.2014, author = {Neuber, Corinna and Schumacher, Fabian and Gulbins, Erich and Kleuser, Burkhard}, title = {Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry}, series = {Analytical chemistry}, volume = {86}, journal = {Analytical chemistry}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac501677y}, pages = {9065 -- 9073}, year = {2014}, abstract = {Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjogren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatographyelectrospray ionizationquadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjogren-Larsson syndrome, in more detail.}, language = {en} } @article{NeuberSchumacherGulbinsetal.2017, author = {Neuber, Corinna and Schumacher, Fabian and Gulbins, Erich and Kleuser, Burkhard}, title = {Mass Spectrometric Determination of Fatty Aldehydes Exemplified by Monitoring the Oxidative Degradation of (2E)-Hexadecenal in HepG2 Cell Lysates}, series = {Lipidomics}, volume = {125}, journal = {Lipidomics}, publisher = {Humana Press}, address = {Totowa}, isbn = {978-1-4939-6946-3}, issn = {0893-2336}, doi = {10.1007/978-1-4939-6946-3_10}, pages = {147 -- 158}, year = {2017}, abstract = {Within the last few decades, liquid chromatography-mass spectrometry (LC-MS) has become a preferred method for manifold issues in analytical biosciences, given its high selectivity and sensitivity. However, the analysis of fatty aldehydes, which are important components of cell metabolism, remains challenging. Usually, chemical derivatization prior to MS detection is required to enhance ionization efficiency. In this regard, the coupling of fatty aldehydes to hydrazines like 2,4-dinitrophenylhydrazine (DNPH) is a common approach. Additionally, hydrazones readily react with fatty aldehydes to form stable derivatives, which can be easily separated using high-performance liquid chromatography (HPLC) and subsequently detected by MS. Here, we exemplarily present the quantification of the long-chain fatty aldehyde (2E)-hexadecenal, a break-down product of the bioactive lipid sphingosine 1-phosphate (S1P), after derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) via isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight (ESI-QTOF) MS. Moreover, we show that the addition of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC hydrochloride) as a coupling agent allows for simultaneous determination of fatty aldehydes and fatty acids as DAIH derivatives. Taking advantage of this, we describe in detail how to monitor the degradation of (2E)-hexadecenal and the concurrent formation of its oxidation product (2E)-hexadecenoic acid in lysates of human hepatoblastoma (HepG2) cells within this chapter.}, language = {en} } @article{FayyazJaptokSchumacheretal.2017, author = {Fayyaz, Susann and Japtok, Lukasz and Schumacher, Fabian and Wigger, Dominik and Schulz, Tim Julius and Haubold, Kathrin and Gulbins, Erich and V{\"o}ller, Heinz and Kleuser, Burkhard}, title = {Lysophosphatidic acid inhibits insulin signaling in primary rat hepatocytes via the LPA(3) receptor subtype and is increased in obesity}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {43}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000480470}, pages = {445 -- 456}, year = {2017}, abstract = {Background/Aims: Obesity is a main risk factor for the development of hepatic insulin resistance and it is accompanied by adipocyte hypertrophy and an elevated expression of different adipokines such as autotaxin (ATX). ATX converts lysophosphatidylcholine to lysophosphatidic acid (LPA) and acts as the main producer of extracellular LPA. This bioactive lipid regulates a broad range of physiological and pathological responses by activation of LPA receptors (LPA1-6). Methods: The activation of phosphatidylinositide 3-kinases (PI3K) signaling (Akt and GSK-3ß) was analyzed via western blotting in primary rat hepatocytes. Incorporation of glucose into glycogen was measured by using radio labeled glucose. Real-time PCR analysis and pharmacological modulation of LPA receptors were performed. Human plasma LPA levels of obese (BMI > 30, n = 18) and normal weight individuals (BMI 18.5-25, n = 14) were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Results: Pretreatment of primary hepatocytes with LPA resulted in an inhibition of insulin-mediated Gck expression, PI3K activation and glycogen synthesis. Pharmacological approaches revealed that the LPA3-receptor subtype is responsible for the inhibitory effect of LPA on insulin signaling. Moreover, human plasma LPA concentrations (16: 0 LPA) of obese participants (BMI > 30) are significantly elevated in comparison to normal weight individuals (BMI 18.5-25). Conclusion: LPA is able to interrupt insulin signaling in primary rat hepatocytes via the LPA3 receptor subtype. Moreover, the bioactive lipid LPA (16: 0) is increased in obesity.}, language = {en} } @article{WiggerSchumacherSchneiderSchauliesetal.2021, author = {Wigger, Dominik and Schumacher, Fabian and Schneider-Schaulies, Sibylle and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate metabolism and insulin signaling}, series = {Cellular signalling}, volume = {82}, journal = {Cellular signalling}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0898-6568}, doi = {10.1016/j.cellsig.2021.109959}, pages = {16}, year = {2021}, abstract = {Insulin is the main anabolic hormone secreted by 13-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic 13-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.}, language = {en} } @article{BeckmannBeckerKadowetal.2019, author = {Beckmann, Nadine and Becker, Katrin Anne and Kadow, Stephanie and Schumacher, Fabian and Kramer, Melanie and Kuehn, Claudine and Schulz-Schaeffer, Walter J. and Edwards, Michael J. and Kleuser, Burkhard and Gulbins, Erich and Carpinteiro, Alexander}, title = {Acid Sphingomyelinase Deficiency Ameliorates Farber Disease}, series = {International journal of molecular sciences}, volume = {20}, journal = {International journal of molecular sciences}, number = {24}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms20246253}, pages = {18}, year = {2019}, abstract = {Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can't achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients.}, language = {en} } @article{ZeitlerYeAndreyevaetal.2019, author = {Zeitler, Stefanie and Ye, Lian and Andreyeva, Aksana and Schumacher, Fabian and Monti, Juliana and N{\"u}rnberg, Bernd and Nowak, Gabriel and Kleuser, Burkhard and Reichel, Martin and Fejtova, Anna and Kornhuber, Johannes and Rhein, Cosima and Friedland, Kristina}, title = {Acid sphingomyelinase - a regulator of canonical transient receptor potential channel 6 (TRPC6) activity}, series = {Journal of neurochemistry}, volume = {150}, journal = {Journal of neurochemistry}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-3042}, doi = {10.1111/jnc.14823}, pages = {678 -- 690}, year = {2019}, abstract = {Recent investigations propose the acid sphingomyelinase (ASM)/ceramide system as a novel target for antidepressant action. ASM catalyzes the breakdown of the abundant membrane lipid sphingomyelin to the lipid messenger ceramide. This ASM-induced lipid modification induces a local shift in membrane properties, which influences receptor clustering and downstream signaling. Canonical transient receptor potential channels 6 (TRPC6) are non-selective cation channels located in the cell membrane that play an important role in dendritic growth, synaptic plasticity and cognition in the brain. They can be activated by hyperforin, an ingredient of the herbal remedy St. John's wort for treatment of depression disorders. Because of their role in the context of major depression, we investigated the crosstalk between the ASM/ceramide system and TRPC6 ion channels in a pheochromocytoma cell line 12 neuronal cell model (PC12 rat pheochromocytoma cell line). Ca2+ imaging experiments indicated that hyperforin-induced Ca2+ influx through TRPC6 channels is modulated by ASM activity. While antidepressants, known as functional inhibitors of ASM activity, reduced TRPC6-mediated Ca2+ influx, extracellular application of bacterial sphingomyelinase rebalanced TRPC6 activity in a concentration-related way. This effect was confirmed in whole-cell patch clamp electrophysiology recordings. Lipidomic analyses revealed a decrease in very long chain ceramide/sphingomyelin molar ratio after ASM inhibition, which was connected with changes in the abundance of TRPC6 channels in flotillin-1-positive lipid rafts as visualized by western blotting. Our data provide evidence that the ASM/ceramide system regulates TRPC6 channels likely by controlling their recruitment to specific lipid subdomains and thereby fine-tuning their physical properties.}, language = {en} } @article{GrafenSchumacherChithelenetal.2019, author = {Grafen, Anika and Schumacher, Fabian and Chithelen, Janice and Kleuser, Burkhard and Beyersdorf, Niklas and Schneider-Schaulies, J{\"u}rgen}, title = {Use of Acid Ceramidase and Sphingosine Kinase Inhibitors as Antiviral Compounds Against Measles Virus Infection of Lymphocytes in vitro}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00218}, pages = {14}, year = {2019}, abstract = {As structural membrane components and signaling effector molecules sphingolipids influence a plethora of host cell functions, and by doing so also the replication of viruses. Investigating the effects of various inhibitors of sphingolipid metabolism in primary human peripheral blood lymphocytes (PBL) and the human B cell line BJAB we found that not only the sphingosine kinase (SphK) inhibitor SKI-II, but also the acid ceramidase inhibitor ceranib-2 efficiently inhibited measles virus (MV) replication. Virus uptake into the target cells was not grossly altered by the two inhibitors, while titers of newly synthesized MV were reduced by approximately 1 log (90\%) in PBL and 70-80\% in BJAB cells. Lipidomic analyses revealed that in PBL SKI-II led to increased ceramide levels, whereas in BJAB cells ceranib-2 increased ceramides. SKI-II treatment decreased sphingosine-1-phosphate (S1P) levels in PBL and BJAB cells. Furthermore, we found that MV infection of lymphocytes induced a transient (0.5-6 h) increase in S1P, which was prevented by SKI-II. Investigating the effect of the inhibitors on the metabolic (mTORC1) activity we found that ceranib-2 reduced the phosphorylation of p70 S6K in PBL, and that both inhibitors, ceranib-2 and SKI-II, reduced the phosphorylation of p70 S6K in BJAB cells. As mTORC1 activity is required for efficient MV replication, this effect of the inhibitors is one possible antiviral mechanism. In addition, reduced intracellular S1P levels affect a number of signaling pathways and functions including Hsp90 activity, which was reported to be required for MV replication. Accordingly, we found that pharmacological inhibition of Hsp90 with the inhibitor 17-AAG strongly impaired MV replication in primary PBL. Thus, our data suggest that treatment of lymphocytes with both, acid ceramidase and SphK inhibitors, impair MV replication by affecting a number of cellular activities including mTORC1 and Hsp90, which alter the metabolic state of the cells causing a hostile environment for the virus.}, language = {en} } @article{BoertleinSchumacherKleuseretal.2019, author = {B{\"o}rtlein, Charlene and Schumacher, Fabian and Kleuser, Burkhard and D{\"o}lken, Lars and Avota, Elita}, title = {Role of Neutral Sphingomyelinase-2 (NSM 2) in the Control of T Cell Plasma Membrane Lipid Composition and Cholesterol Homeostasis}, series = {Frontiers in cell and developmental biology}, volume = {7}, journal = {Frontiers in cell and developmental biology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00226}, pages = {16}, year = {2019}, abstract = {The activity of neutral sphingomyelinase-2 (NSM2) to catalyze the conversion of sphingomyelin (SM) to ceramide and phosphocholine at the cytosolic leaflet of plasma membrane (PM) is important in T cell receptor (TCR) signaling. We recently identified PKC zeta as a major NSM2 downstream effector which regulates microtubular polarization. It remained, however, unclear to what extent NSM2 activity affected overall composition of PM lipids and downstream effector lipids in antigen stimulated T cells. Here, we provide a detailed lipidomics analyses on PM fractions isolated from TCR stimulated wild type and NSM2 deficient (Delta NSM) Jurkat T cells. This revealed that in addition to that of sphingolipids, NSM2 depletion also affected concentrations of many other lipids. In particular, NSM2 ablation resulted in increase of lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamine (LPE) which both govern PM biophysical properties. Crucially, TCR dependent upregulation of the important T cell signaling lipid diacylglycerol (DAG), which is fundamental for activation of conventional and novel PKCs, was abolished in Delta NSM cells. Moreover, NSM2 activity was found to play an important role in PM cholesterol transport to the endoplasmic reticulum (ER) and production of cholesteryl esters (CE) there. Most importantly, CE accumulation was essential to sustain human T cell proliferation. Accordingly, inhibition of CE generating enzymes, the cholesterol acetyltransferases ACAT1/SOAT1 and ACAT2/SOAT2, impaired TCR driven expansion of both CD4(+) and CD8(+) T cells. In summary, our study reveals an important role of NSM2 in regulating T cell functions by its multiple effects on PM lipids and cholesterol homeostasis.}, language = {en} } @article{RakersSchumacherMeinletal.2016, author = {Rakers, Christin and Schumacher, Fabian and Meinl, Walter and Glatt, Hansruedi and Kleuser, Burkhard and Wolber, Gerhard}, title = {In Silico Prediction of Human Sulfotransferase 1E1 Activity Guided by Pharmacophores from Molecular Dynamics Simulations}, series = {The journal of biological chemistry}, volume = {291}, journal = {The journal of biological chemistry}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M115.685610}, pages = {58 -- 71}, year = {2016}, abstract = {Acting during phase II metabolism, sulfotransferases (SULTs) serve detoxification by transforming a broad spectrum of compounds from pharmaceutical, nutritional, or environmental sources into more easily excretable metabolites. However, SULT activity has also been shown to promote formation of reactive metabolites that may have genotoxic effects. SULT subtype 1E1 (SULT1E1) was identified as a key player in estrogen homeostasis, which is involved in many physiological processes and the pathogenesis of breast and endometrial cancer. The development of an in silico prediction model for SULT1E1 ligands would therefore support the development of metabolically inert drugs and help to assess health risks related to hormonal imbalances. Here, we report on a novel approach to develop a model that enables prediction of substrates and inhibitors of SULT1E1. Molecular dynamics simulations were performed to investigate enzyme flexibility and sample protein conformations. Pharmacophores were developed that served as a cornerstone of the model, and machine learning techniques were applied for prediction refinement. The prediction model was used to screen the DrugBank (a database of experimental and approved drugs): 28\% of the predicted hits were reported in literature as ligands of SULT1E1. From the remaining hits, a selection of nine molecules was subjected to biochemical assay validation and experimental results were in accordance with the in silico prediction of SULT1E1 inhibitors and substrates, thus affirming our prediction hypotheses.}, language = {en} } @article{WienholdMacriNouaillesetal.2018, author = {Wienhold, Sandra-Maria and Macri, Mario and Nouailles, Geraldine and Dietert, Kristina and Gurtner, Corinne and Gruber, Achim D. and Heimesaat, Markus M. and Lienau, Jasmin and Schumacher, Fabian and Kleuser, Burkhard and Opitz, Bastian and Suttorp, Norbert and Witzenrath, Martin and M{\"u}ller-Redetzky, Holger C.}, title = {Ventilator-induced lung injury is aggravated by antibiotic mediated microbiota depletion in mice}, series = {Critical Care}, volume = {22}, journal = {Critical Care}, number = {282}, publisher = {BMC}, address = {London}, issn = {1466-609X}, doi = {10.1186/s13054-018-2213-8}, pages = {12}, year = {2018}, abstract = {BackgroundAntibiotic exposure alters the microbiota, which can impact the inflammatory immune responses. Critically ill patients frequently receive antibiotic treatment and are often subjected to mechanical ventilation, which may induce local and systemic inflammatory responses and development of ventilator-induced lung injury (VILI). The aim of this study was to investigate whether disruption of the microbiota by antibiotic therapy prior to mechanical ventilation affects pulmonary inflammatory responses and thereby the development of VILI.MethodsMice underwent 6-8weeks of enteral antibiotic combination treatment until absence of cultivable bacteria in fecal samples was confirmed. Control mice were housed equally throughout this period. VILI was induced 3 days after completing the antibiotic treatment protocol, by high tidal volume (HTV) ventilation (34ml/kg; positive end-expiratory pressure=2 cmH(2)O) for 4h. Differences in lung function, oxygenation index, pulmonary vascular leakage, macroscopic assessment of lung injury, and leukocyte and lymphocyte differentiation were assessed. Control groups of mice ventilated with low tidal volume and non-ventilated mice were analyzed accordingly.ResultsAntibiotic-induced microbiota depletion prior to HTV ventilation led to aggravation of VILI, as shown by increased pulmonary permeability, increased oxygenation index, decreased pulmonary compliance, enhanced macroscopic lung injury, and increased cytokine/chemokine levels in lung homogenates.ConclusionsDepletion of the microbiota by broad-spectrum antibiotics prior to HTV ventilation renders mice more susceptible to developing VILI, which could be clinically relevant for critically ill patients frequently receiving broad-spectrum antibiotics.}, language = {en} } @article{MuellerFinkeEbertetal.2018, author = {M{\"u}ller, S. M. and Finke, Hannah and Ebert, Franziska and Kopp, Johannes Florian and Schumacher, Fabian and Kleuser, Burkhard and Francesconi, Kevin A. and Raber, G. and Schwerdtle, Tanja}, title = {Arsenic-containing hydrocarbons}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {92}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-018-2194-z}, pages = {1751 -- 1765}, year = {2018}, abstract = {Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids found in fish and algae, elicit substantial toxic effects in various human cell lines and have a considerable impact on cellular energy levels. The underlying mode of action, however, is still unknown. The present study analyzes the effects of two AsHCs (AsHC 332 and AsHC 360) on the expression of 44 genes covering DNA repair, stress response, cell death, autophagy, and epigenetics via RT-qPCR in human liver (HepG2) cells. Both AsHCs affected the gene expression, but to different extents. After treatment with AsHC 360, flap structure-specific endonuclease 1 (FEN1) as well as xeroderma pigmentosum group A complementing protein (XPA) and (cytosine-5)-methyltransferase 3A (DNMT3A) showed time- and concentration-dependent alterations in gene expression, thereby indicating an impact on genomic stability. In the subsequent analysis of epigenetic markers, within 72 h, neither AsHC 332 nor AsHC 360 showed an impact on the global DNA methylation level, whereas incubation with AsHC 360 increased the global DNA hydroxymethylation level. Analysis of cell extracts and cell media by HPLC-mass spectrometry revealed that both AsHCs were considerably biotransformed. The identified metabolites include not only the respective thioxo-analogs of the two AsHCs, but also several arsenic-containing fatty acids and fatty alcohols, contributing to our knowledge of biotransformation mechanisms of arsenolipids.}, language = {en} } @article{GulbinsSchumacherBeckeretal.2018, author = {Gulbins, Anne and Schumacher, Fabian and Becker, Katrin Anne and Wilker, Barbara and Soddemann, Matthias and Boldrin, Francesco and M{\"u}ller, Christian P. and Edwards, Michael J. and Goodman, Michael and Caldwell, Charles C. and Kleuser, Burkhard and Kornhuber, Johannes and Szabo, Ildiko and Gulbins, Erich}, title = {Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide}, series = {Molecular psychiatry}, volume = {23}, journal = {Molecular psychiatry}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1359-4184}, doi = {10.1038/s41380-018-0090-9}, pages = {2324 -- 2346}, year = {2018}, abstract = {Major depressive disorder (MDD) is a common and severe disease characterized by mood changes, somatic alterations, and often suicide. MDD is treated with antidepressants, but the molecular mechanism of their action is unknown. We found that widely used antidepressants such as amitriptyline and fluoxetine induce autophagy in hippocampal neurons via the slow accumulation of sphingomyelin in lysosomes and Golgi membranes and of ceramide in the endoplasmic reticulum (ER). ER ceramide stimulates phosphatase 2A and thereby the autophagy proteins Ulk, Beclin, Vps34/Phosphatidylinositol 3-kinase, p62, and Lc3B. Although treatment with amitriptyline or fluoxetine requires at least 12 days to achieve sphingomyelin accumulation and the subsequent biochemical and cellular changes, direct inhibition of sphingomyelin synthases with tricyclodecan-9-yl-xanthogenate (D609) results in rapid (within 3 days) accumulation of ceramide in the ER, activation of autophagy, and reversal of biochemical and behavioral signs of stress-induced MDD. Inhibition of Beclin blocks the antidepressive effects of amitriptyline and D609 and induces cellular and behavioral changes typical of MDD. These findings identify sphingolipid-controlled autophagy as an important target for antidepressive treatment methods and provide a rationale for the development of novel antidepressants that act within a few days.}, language = {en} } @article{ZabihiGraffSchumacheretal.2018, author = {Zabihi, Fatemeh and Graff, Patrick and Schumacher, Fabian and Kleuser, Burkhard and Hedtrich, Sarah and Haag, Rainer}, title = {Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery}, series = {Nanoscale}, volume = {10}, journal = {Nanoscale}, number = {35}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c8nr05536j}, pages = {16848 -- 16856}, year = {2018}, abstract = {Due to the low cutaneous bioavailability of tacrolimus (TAC), penetration enhancers are used to improve its penetration into the skin. However, poor loading capacity, non-biodegradability, toxicity, and in some cases inefficient skin penetration are challenging issues that hamper their applications for the dermal TAC delivery. Here we present poly(lactide-co-glycerol) (PLG) as a water soluble, biodegradable, and biocompatible TAC-carrier with high loading capacity (14.5\% w/w for TAC) and high drug delivery efficiencies into the skin. PLG was synthesized by cationic ring-opening copolymerization of a mixture of glycidol and lactide and showed 35 nm and 300 nm average sizes in aqueous solutions before and after loading of TAC, respectively. Delivery experiments on human skin, quantified by fluorescence microscopy and LC-MS/MS, showed a high ability for PLG to deposit Nile red and TAC into the stratum corneum and viable epidermis of skin in comparison with Protopic (R) (0.03\% w/w, TAC ointment). The cutaneous distribution profile of delivered TAC proved that 80\%, 16\%, and 4\% of the cutaneous drug level was deposited in the stratum corneum, viable epidermis, and upper dermis, respectively. TAC delivered by PLG was able to efficiently decrease the IL-2 and TSLP expressions in human skin models. Taking advantage of the excellent physicochemical and biological properties of PLG, it can be used for efficient dermal TAC delivery and potential treatment of inflammatory skin diseases.}, language = {en} } @article{ZoicasSchumacherKleuseretal.2020, author = {Zoicas, Iulia and Schumacher, Fabian and Kleuser, Burkhard and Reichel, Martin and Gulbins, Erich and Fejtova, Anna and Kornhuber, Johannes and Rhein, Cosima}, title = {The forebrain-specific overexpression of acid sphingomyelinase induces depressive-like symptoms in mice}, series = {Cells}, volume = {9}, journal = {Cells}, number = {5}, publisher = {MDPI}, address = {Basel}, pages = {12}, year = {2020}, abstract = {Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tg(fb)) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tg(fb) mice than in female Asm-tg(fb) mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tg(fb) mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.}, language = {en} } @article{DoegeHoenzkeSchumacheretal.2016, author = {D{\"o}ge, Nadine and H{\"o}nzke, Stefan and Schumacher, Fabian and Balzus, Benjamin and Colombo, Miriam and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Sch{\"a}fer-Korting, Monika and Schindler, Anke and R{\"u}hl, Eckart and Skov, Per Stahl and Church, Martin K. and Hedtrich, Sarah and Kleuser, Burkhard and Bodmeier, Roland and Vogt, Annika}, title = {Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers}, series = {Journal of controlled release}, volume = {242}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2016.07.009}, pages = {25 -- 34}, year = {2016}, abstract = {Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-termex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24 h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05\%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24 h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6 h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45 kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{WiggerGulbinsKleuseretal.2019, author = {Wigger, Dominik and Gulbins, Erich and Kleuser, Burkhard and Schumacher, Fabian}, title = {Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00210}, pages = {16}, year = {2019}, abstract = {Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C₁₆ fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d₃ and L-serine-d₃. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B₁). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.}, language = {en} } @article{FrombachUnbehauenKurniasihetal.2019, author = {Frombach, Janna and Unbehauen, Michael and Kurniasih, Indah N. and Schumacher, Fabian and Volz, Pierre and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Kleuser, Burkhard and Haag, Rainer and Alexiev, Ulrike and Vogt, Annika}, title = {Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin}, series = {Journal of controlled release}, volume = {299}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.02.028}, pages = {138 -- 148}, year = {2019}, abstract = {In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8\% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9\% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25\% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3\% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.}, language = {en} } @article{GohlkeZagoriyInostrozaetal.2019, author = {Gohlke, Sabrina and Zagoriy, Vyacheslav and Inostroza, Alvaro Cuadros and Meret, Michael and Mancini, Carola and Japtok, Lukasz and Schumacher, Fabian and Kuhlow, Doreen and Graja, Antonia and Stephanowitz, Heike and J{\"a}hnert, Markus and Krause, Eberhard and Wernitz, Andreas and Petzke, Klaus-Juergen and Sch{\"u}rmann, Annette and Kleuser, Burkhard and Schulz, Tim Julius}, title = {Identification of functional lipid metabolism biomarkers of brown adipose tissue aging}, series = {Molecular Metabolism}, volume = {24}, journal = {Molecular Metabolism}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8778}, doi = {10.1016/j.molmet.2019.03.011}, pages = {1 -- 17}, year = {2019}, abstract = {Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions.}, language = {en} } @article{WanjikuYamamotoKlosseketal.2019, author = {Wanjiku, Barbara and Yamamoto, Kenji and Klossek, Andre and Schumacher, Fabian and Pischon, Hannah and Mundhenk, Lars and Rancan, Fiorenza and Judd, Martyna M. and Ahmed, Muniruddin and Zoschke, Christian and Kleuser, Burkhard and R{\"u}hl, Eckart and Sch{\"a}fer-Korting, Monika}, title = {Qualifying X-ray and Stimulated Raman Spectromicroscopy for Mapping Cutaneous Drug Penetration}, series = {Analytical chemistry}, volume = {91}, journal = {Analytical chemistry}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/acs.analchem.9b00519}, pages = {7208 -- 7214}, year = {2019}, abstract = {Research on topical drug delivery relies on reconstructed human skin (RHS) in addition to ex vivo human and animal skin, each with specific physiological features. Here, we compared the penetration of dexamethasone from an ethanolic hydroxyethyl cellulose gel into ex vivo human skin, murine skin, and RHS. For comprehensive insights into skin morphology and penetration enhancing mechanisms, scanning transmission X-ray microscopy (STXM), liquid chromatography tandem mass spectrometry (LC-MS/MS), and stimulated Raman spectromicroscopy (SRS) were combined. STXM offers high spatial resolution with label-free drug detection and is therefore sensitive to tissue damage. Despite differences in sample preparation and data analysis, the amounts of dexamethasone in RHS, detected and quantified by STXM and LC-MS/MS, were very similar and increased during the first 100 min of exposure. SRS revealed interactions between the gel and the stratum corneum or, more specifically, its protein and lipid structures. Similar to both types of ex vivo skin, higher protein-to-lipid ratios within the stratum corneum of RHS indicated reduced lipid amounts after 30 min of ethanol exposure. Extended ethanol exposure led to a continued reduction of lipids in the ex vivo matrixes, while protein integrity appeared to be compromised in RHS, which led to declining protein signals. In conclusion, LC-MS/MS proved the predictive capability of STXM for label-free drug detection. Combining STXM with SRS precisely dissected the penetration enhancing effects of ethanol. Further studies on topical drug delivery should consider the potential of these complementary techniques.}, language = {en} } @article{RancanVolkmannGiulbudagianetal.2019, author = {Rancan, Fiorenza and Volkmann, Hildburg and Giulbudagian, Michael and Schumacher, Fabian and Stanko, Jessica Isolde and Kleuser, Burkhard and Blume-Peytavi, Ulrike and Calderon, Marcelo and Vogt, Annika}, title = {Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels}, series = {Pharmaceutics : Molecular Diversity Preservation International}, volume = {11}, journal = {Pharmaceutics : Molecular Diversity Preservation International}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11080394}, pages = {14}, year = {2019}, abstract = {Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1\% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1\% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.}, language = {en} } @article{GereckeSchumacherBerndzenetal.2019, author = {Gerecke, Christian and Schumacher, Fabian and Berndzen, Alide and Homann, Thomas and Kleuser, Burkhard}, title = {Vitamin C in combination with inhibition of mutant IDH1 synergistically activates TET enzymes and epigenetically modulates gene silencing in colon cancer cells}, series = {Epigenetics : the official journal of the DNA Methylation Society}, volume = {15}, journal = {Epigenetics : the official journal of the DNA Methylation Society}, number = {3}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1559-2294}, doi = {10.1080/15592294.2019.1666652}, pages = {307 -- 322}, year = {2019}, abstract = {Mutations in the enzyme isocitrate dehydrogenase 1 (IDH1) lead to metabolic alterations and a sustained formation of 2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite as it inhibits the activity of alpha-ketoglutarate-dependent dioxygenases such as ten-eleven translocation (TET) enzymes. Inhibitors of mutant IDH enzymes, like ML309, are currently tested in order to lower the levels of 2-HG. Vitamin C (VC) is an inducer of TET enzymes. To test a new therapeutic avenue of synergistic effects, the anti-neoplastic activity of inhibition of mutant IDH1 via ML309 in the presence of VC was investigated in the colon cancer cell line HCT116 IDH1(R132H/+) (harbouring a mutated IDH1 allele) and the parental cells HCT116 IDH1(+/+) (wild type IDH1). Measurement of the oncometabolite indicated a 56-fold higher content of 2-HG in mutated cells compared to wild type cells. A significant reduction of 2-HG was observed in mutated cells after treatment with ML 309, whereas VC produced only minimally changes of the oncometabolite. However, combinatorial treatment with both, ML309 and VC, in mutated cells induced pronounced reduction of 2-HG leading to levels comparable to those in wild type cells. The decreased level of 2-HG in mutated cells after combinatorial treatment was accompanied by an enhanced global DNA hydroxymethylation and an increased gene expression of certain tumour suppressors. Moreover, mutated cells showed an increased percentage of apoptotic cells after treatment with non-cytotoxic concentrations of ML309 and VC. These results suggest that combinatorial therapy is of interest for further investigation to rescue TET activity and treatment of IDH1/2 mutated cancers.}, language = {en} } @article{SeitzSchumacherBakeretal.2019, author = {Seitz, Aaron P. and Schumacher, Fabian and Baker, Jennifer and Soddemann, Matthias and Wilker, Barbara and Caldwell, Charles C. and Gobble, Ryan M. and Kamler, Markus and Becker, Katrin Anne and Beck, Sascha and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich}, title = {Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia}, series = {Journal of molecular medicine}, volume = {97}, journal = {Journal of molecular medicine}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {0946-2716}, doi = {10.1007/s00109-019-01800-1}, pages = {1195 -- 1211}, year = {2019}, abstract = {Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP.Key messagesNovel dip-coating method to coat plastic surfaces with lipids.Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface.Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms.Sphingosine coatings of endotracheal tubes induce killing of pathogens.Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia.}, language = {en} } @article{KachlerBailerHeimetal.2017, author = {Kachler, Katerina and Bailer, Maximilian and Heim, Lisanne and Schumacher, Fabian and Reichel, Martin and Holzinger, Corinna D. and Trump, Sonja and Mittler, Susanne and Monti, Juliana and Trufa, Denis I. and Rieker, Ralf J. and Hartmann, Arndt and Sirbu, Horia and Kleuser, Burkhard and Kornhuber, Johannes and Finotto, Susetta}, title = {Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma}, series = {Cancer research}, volume = {77}, journal = {Cancer research}, number = {21}, publisher = {American Association for Cancer Research}, address = {Philadelphia}, issn = {0008-5472}, doi = {10.1158/0008-5472.CAN-16-3313}, pages = {5963 -- 5976}, year = {2017}, abstract = {The lipid hydrolase enzyme acid sphingomyelinase (ASM) is required for the conversion of the lipid cell membrane component sphingomyelin into ceramide. In cancer cells, ASM-mediated ceramide production is important for apoptosis, cell proliferation, and immune modulation, highlighting ASM as a potential multimodal therapeutic target. In this study, we demonstrate elevated ASM activity in the lung tumor environment and blood serum of patients with non-small cell lung cancer (NSCLC). RNAi-mediated attenuation of SMPD1 in human NSCLC cells rendered them resistant to serum starvation-induced apoptosis. In a murine model of lung adenocarcinoma, ASM deficiency reduced tumor development in a manner associated with significant enhancement of Th1-mediated and cytotoxic T-cell-mediated antitumor immunity. Our findings indicate that targeting ASM in NSCLC can act by tumor cell-intrinsic and-extrinsic mechanisms to suppress tumor cell growth, most notably by enabling an effective antitumor immune response by the host. (C) 2017 AACR.}, language = {en} } @article{GutbierSchoenrockEhrleretal.2018, author = {Gutbier, Birgitt and Sch{\"o}nrock, Stefanie M. and Ehrler, Carolin and Haberberger, Rainer and Dietert, Kristina and Gruber, Achim D. and Kummer, Wolfgang and Michalick, Laura and Kuebler, Wolfgang M. and Hocke, Andreas C. and Szymanski, Kolja and Letsiou, Eleftheria and L{\"u}th, Anja and Schumacher, Fabian and Kleuser, Burkhard and Mitchell, Timothy J. and Bertrams, Wilhelm and Schmeck, Bernd and Treue, Denise and Klauschen, Frederick and Bauer, Torsten T. and T{\"o}nnies, Mario and Weissmann, Norbert and Hippenstiel, Stefan and Suttorp, Norbert and Witzenrath, Martin}, title = {Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2}, series = {Critical care medicine}, volume = {46}, journal = {Critical care medicine}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, organization = {CAPNETZ Study Grp}, issn = {0090-3493}, doi = {10.1097/CCM.0000000000002916}, pages = {e258 -- e267}, year = {2018}, abstract = {Objectives: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. Design: Controlled, in vitro, ex vivo, and in vivo laboratory study. Subjects: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. Interventions: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. Measurements and Main Results: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1(-/-) mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. Conclusions: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury.}, language = {en} } @article{BalzusSahleHoenzkeetal.2017, author = {Balzus, Benjamin and Sahle, Fitsum Feleke and H{\"o}nzke, Stefan and Gerecke, Christian and Schumacher, Fabian and Hedtrich, Sarah and Kleuser, Burkhard and Bodmeier, Roland}, title = {Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium}, series = {European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology}, volume = {115}, journal = {European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2017.02.001}, pages = {122 -- 130}, year = {2017}, abstract = {Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3-0.7\%) than ethyl cellulose nanoparticles (1.4-2.2\%). By blending the two polymers (1:1), small (105 nm), positively charged (+37 mV) nanoparticles with sufficient dexamethasone loading (1.3\%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness.}, language = {en} } @article{PastukhovSchwalmZangemeisterWittkeetal.2014, author = {Pastukhov, Oleksandr and Schwalm, Stephanie and Zangemeister-Wittke, Uwe and Fabbro, Doriano and Bornancin, Frederic and Japtok, Lukasz and Kleuser, Burkhard and Pfeilschifter, Josef and Huwiler, Andrea}, title = {The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death}, series = {British journal of pharmacology : journal of The British Pharmacological Society}, volume = {171}, journal = {British journal of pharmacology : journal of The British Pharmacological Society}, number = {24}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0007-1188}, doi = {10.1111/bph.12886}, pages = {5829 -- 5844}, year = {2014}, abstract = {Background and PurposeCeramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental ApproachThe breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key ResultsIn both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and ImplicationsOur data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.}, language = {en} } @article{JaptokSchaperBaeumeretal.2012, author = {Japtok, Lukasz and Schaper, Katrin and B{\"a}umer, Wolfgang and Radeke, Heinfried H. and Jeong, Se Kyoo and Kleuser, Burkhard}, title = {Sphingosine 1-Phosphate Modulates Antigen Capture by Murine Langerhans Cells via the S1P(2) Receptor Subtype}, series = {PLOS ONE}, volume = {7}, journal = {PLOS ONE}, number = {11}, publisher = {PUBLIC LIBRARY SCIENCE}, address = {SAN FRANCISCO}, issn = {1932-6203}, doi = {10.1371/journal.pone.0049427}, pages = {11}, year = {2012}, abstract = {Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P(2) receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P(2) not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions. Citation: Japtok L, Schaper K, Baumer W, Radeke HH, Jeong SK, et al. (2012) Sphingosine 1-Phosphate Modulates Antigen Capture by Murine Langerhans Cells via the S1P(2) Receptor Subtype. PLoS ONE 7(11): e49427. doi:10.1371/journal.pone.0049427}, language = {en} } @article{SchaperDickhautJaptoketal.2013, author = {Schaper, Katrin and Dickhaut, Jeannette and Japtok, Lukasz and Kietzmann, Manfred and Mischke, Reinhard and Kleuser, Burkhard and B{\"a}umer, Wolfgang}, title = {Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis}, series = {Journal of dermatological scienc}, volume = {71}, journal = {Journal of dermatological scienc}, number = {1}, publisher = {Elsevier}, address = {Clare}, issn = {0923-1811}, doi = {10.1016/j.jdermsci.2013.03.006}, pages = {29 -- 36}, year = {2013}, abstract = {Background: It has been indicated that the sphingolipid sphingosine-1-phosphate (SIP) restrains the ability of dendritic cells to migrate to lymph nodes. Furthermore SIP has been demonstrated to inhibit cell growth in human keratinocytes. However, only little is known about the effect of S1P in hyperproliferative and inflammatory in vivo models. Objective: In this study, locally acting SIP was explored in different experimental mouse models of psoriasis vulgaris. Methods: S1P and FTY720 were tested in the imiquimod-induced psoriasis mouse model, the mouse tail assay and a pilot study of the severe combined immunodeficiency mice (SCID). Results: In the imiquimod model the positive control diflorasone diacetate and S1P, but not FTY720 reduced the imiquimod-induced epidermal hyperproliferation of the ear skin. This effect was confirmed in the SCID model, where S1P treated skin from patients suffering from psoriasis showed a decrease in epidermal thickness compared to vehicle. In the imiquimod model, there was also significant inhibition of ear swelling and a moderate reduction of inflammatory cell influx and oedema formation in ear skin by SIP treatment. The inflammatory response on the back skin was, however, only reduced by diflorasone diacetate. In the mouse tail assay, the influence of S1P and FTY720 in stratum granulosum formation was tested compared to the positive control calcipotriol. Whereas topical administration of calcipotriol led to a low but significant increase of stratum granulosum, S1P and FTY720 lacked such an effect. Conclusion: Taken together, these results imply that topical administration of SIP might be a new option for the treatment of mild to moderate psoriasis lesions.}, language = {en} } @article{PewznerJungTabazavarehGrassmeetal.2014, author = {Pewzner-Jung, Yael and Tabazavareh, Shaghayegh Tavakoli and Grassme, Heike and Becker, Katrin Anne and Japtok, Lukasz and Steinmann, Joerg and Joseph, Tammar and Lang, Stephan and Tuemmler, Burkhard and Schuchman, Edward H. and Lentsch, Alex B. and Kleuser, Burkhard and Edwards, Michael J. and Futerman, Anthony H. and Gulbins, Erich}, title = {Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa}, series = {EMBO molecular medicine}, volume = {6}, journal = {EMBO molecular medicine}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-4676}, doi = {10.15252/emmm.201404075}, pages = {1205 -- 1214}, year = {2014}, abstract = {Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P.aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P.aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection.}, language = {en} } @article{FayyazHenkelJaptoketal.2014, author = {Fayyaz, Susann and Henkel, Janin and Japtok, Lukasz and Kr{\"a}mer, Stephanie and Damm, Georg and Seehofer, Daniel and P{\"u}schel, Gerhard Paul and Kleuser, Burkhard}, title = {Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P(2) receptor subtype}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {57}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-013-3123-6}, pages = {373 -- 382}, year = {2014}, abstract = {Enhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance. The incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice. Palmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P(2) receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P(2), was not able to inhibit insulin signalling. These data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P(2) receptor to impair insulin signalling. In particular, S1P(2) inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance.}, language = {en} } @article{HenryNeillBeckeretal.2015, author = {Henry, Brian D. and Neill, Daniel R. and Becker, Katrin Anne and Gore, Suzanna and Bricio-Moreno, Laura and Ziobro, Regan and Edwards, Michael J. and Muehlemann, Kathrin and Steinmann, Joerg and Kleuser, Burkhard and Japtok, Lukasz and Luginbuehl, Miriam and Wolfmeier, Heidi and Scherag, Andre and Gulbins, Erich and Kadioglu, Aras and Draeger, Annette and Babiychuk, Eduard B.}, title = {Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice}, series = {Nature biotechnology : the science and business of biotechnology}, volume = {33}, journal = {Nature biotechnology : the science and business of biotechnology}, number = {1}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1087-0156}, doi = {10.1038/nbt.3037}, pages = {81 -- U295}, year = {2015}, abstract = {Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance.}, language = {en} } @article{JaptokSchmitzFayyazetal.2015, author = {Japtok, Lukasz and Schmitz, Elisabeth I. and Fayyaz, Susann and Kr{\"a}mer, Stephanie and Hsu, Leigh J. and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate counteracts insulin signaling in pancreatic beta-cells via the sphingosine 1-phosphate receptor subtype 2}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {29}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {8}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.14-263194}, pages = {3357 -- 3369}, year = {2015}, abstract = {Glucolipotoxic stress has been identified as a key player in the progression of pancreatic beta-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic beta-cells but also regulate beta-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in beta-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P(2)) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P(2) axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by beta-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P(2), the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued beta-cell damage clearly indicating an important role of the S1P(2) in beta-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish beta-cell dysfunction and the development of T2D.}, language = {en} } @article{MichelsJaptokAlisjahbanaetal.2015, author = {Michels, Meta and Japtok, Lukasz and Alisjahbana, Bachti and Wisaksana, Rudi and Sumardi, Uun and Puspita, Mita and Kleuser, Burkhard and de Mast, Quirijn and van der Ven, Andre J. A. M.}, title = {Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage}, series = {Journal of infection}, volume = {71}, journal = {Journal of infection}, number = {4}, publisher = {Elsevier}, address = {London}, issn = {0163-4453}, doi = {10.1016/j.jinf.2015.06.014}, pages = {480 -- 487}, year = {2015}, abstract = {Background: A transient endothelial hyperpermeability is a hallmark of severe dengue infections. Sphingosine-1-phosphate (S1P) maintains vascular integrity and protects against plasma leakage. We related plasma S1P levels to dengue-induced plasma leakage and studied mechanisms that may underlie the decrease in S1P levels in dengue. Methods: We determined circulating levels of S1P in 44 Indonesian adults with acute dengue and related levels to plasma leakage, as determined by daily ultrasonography, and to levels of its chaperone apolipoprotein M, other lipoproteins and platelets. Results: Plasma S1P levels were decreased during dengue and patients with plasma leakage had lower median levels compared to those without (638 vs. 745 nM; p < 0.01). ApoM and other lipoprotein levels were also decreased during dengue, but did not correlate to S1P levels. Platelet counts correlated positively with S1P levels, but S1P levels were not higher in frozen-thawed platelet rich plasma, arguing against platelets as an important cellular source of S1P in dengue. Conclusions: Decreased plasma S1P levels during dengue are associated with plasma leakage. We speculate that decreased levels of ApoM underlies the lower S1P levels. Modulation of S1P levels and its receptors may be a novel therapeutic intervention to prevent plasma leakage in dengue. (C) 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.}, language = {en} } @article{CarpinteiroBeckerJaptoketal.2015, author = {Carpinteiro, Alexander and Becker, Katrin Anne and Japtok, Lukasz and Hessler, Gabriele and Keitsch, Simone and Pozgajova, Miroslava and Schmid, Kurt W. and Adams, Constantin and M{\"u}ller, Stefan and Kleuser, Burkhard and Edwards, Michael J. and Grassme, Heike and Helfrich, Iris and Gulbins, Erich}, title = {Regulation of hematogenous tumor metastasis by acid sphingomyelinase}, series = {EMBO molecular medicine}, volume = {7}, journal = {EMBO molecular medicine}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-4676}, pages = {714 -- 734}, year = {2015}, abstract = {Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90\% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1(-/-) mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of 51 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C-16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing 1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis.}, language = {en} } @article{HustonKornhuberMuehleetal.2016, author = {Huston, Joseph P. and Kornhuber, Johannes and Muehle, Christiane and Japtok, Lukasz and Komorowski, Mara and Mattern, Claudia and Reichel, Martin and Gulbins, Erich and Kleuser, Burkhard and Topic, Bianca and Silva, Maria A. De Souza and Mueller, Christian P.}, title = {A sphingolipid mechanism for behavioral extinction}, series = {Journal of neurochemistry}, volume = {137}, journal = {Journal of neurochemistry}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-3042}, doi = {10.1111/jnc.13537}, pages = {589 -- 603}, year = {2016}, abstract = {Reward-dependent instrumental behavior must continuously be re-adjusted according to environmental conditions. Failure to adapt to changes in reward contingencies may incur psychiatric disorders like anxiety and depression. When an expected reward is omitted, behavior undergoes extinction. While extinction involves active re-learning, it is also accompanied by emotional behaviors indicative of frustration, anxiety, and despair (extinction-induced depression). Here, we report evidence for a sphingolipid mechanism in the extinction of behavior. Rapid extinction, indicating efficient re-learning, coincided with a decrease in the activity of the enzyme acid sphingomyelinase (ASM), which catalyzes turnover of sphingomyelin to ceramide, in the dorsal hippocampus of rats. The stronger the decline in ASM activity, the more rapid was the extinction. Sphingolipid-focused lipidomic analysis showed that this results in a decline of local ceramide species in the dorsal hippocampus. Ceramides shape the fluidity of lipid rafts in synaptic membranes and by that way can control neural plasticity. We also found that aging modifies activity of enzymes and ceramide levels in selective brain regions. Aging also changed how the chronic treatment with corticosterone (stress) or intranasal dopamine modified regional enzyme activity and ceramide levels, coinciding with rate of extinction. These data provide first evidence for a functional ASM-ceramide pathway in the brain involved in the extinction of learned behavior. This finding extends the known cellular mechanisms underlying behavioral plasticity to a new class of membrane-located molecules, the sphingolipids, and their regulatory enzymes, and may offer new treatment targets for extinction- and learning-related psychopathological conditions.}, language = {en} } @article{HollmannWernerAvotaetal.2016, author = {Hollmann, Claudia and Werner, Sandra and Avota, Elita and Reuter, Dajana and Japtok, Lukasz and Kleuser, Burkhard and Gulbins, Erich and Becker, Katrin Anne and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4(+) Conventional versus Foxp3(+) Regulatory T Cells}, series = {The journal of immunology}, volume = {197}, journal = {The journal of immunology}, publisher = {American Assoc. of Immunologists}, address = {Bethesda}, issn = {0022-1767}, doi = {10.4049/jimmunol.1600691}, pages = {3130 -- 3141}, year = {2016}, abstract = {CD4(+) Foxp3(+) regulatory T cells (Tregs) depend on CD28 signaling for their survival and function, a receptor that has been previously shown to activate the acid sphingomyelinase (Asm)/ceramide system. In this article, we show that the basal and CD28-induced Asm activity is higher in Tregs than in conventional CD4(+) T cells (Tconvs) of wild-type (wt) mice. In Asm-deficient (Smpd1(-/-); Asm(-/-)) mice, as compared with wt mice, the frequency of Tregs among CD4(+) T cells, turnover of the effector molecule CTLA-4, and their suppressive activity in vitro were increased. The biological significance of these findings was confirmed in our Treg-sensitive mouse model of measles virus (MV) CNS infection, in which we observed more infected neurons and less MV-specific CD8(+) T cells in brains of Asm(-/-) mice compared with wt mice. In addition to genetic deficiency, treatment of wt mice with the Asm inhibitor amitriptyline recapitulated the phenotype of Asm-deficient mice because it also increased the frequency of Tregs among CD4(+) T cells. Reduced absolute cell numbers of Tconvs after inhibitor treatment in vivo and extensive in vitro experiments revealed that Tregs are more resistant toward Asm inhibitor-induced cell death than Tconvs. Mechanistically, IL-2 was capable of providing crucial survival signals to the Tregs upon inhibitor treatment in vitro, shifting the Treg/Tconv ratio to the Treg side. Thus, our data indicate that Asm-inhibiting drugs should be further evaluated for the therapy of inflammatory and autoimmune disorders.}, language = {en} } @article{NojimaKonishiFreemanetal.2016, author = {Nojima, Hiroyuki and Konishi, Takanori and Freeman, Christopher M. and Schuster, Rebecca M. and Japtok, Lukasz and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich and Lentsch, Alex B.}, title = {Chemokine Receptors, CXCR1 and CXCR2, Differentially Regulate Exosome Release in Hepatocytes}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0161443}, pages = {6900 -- +}, year = {2016}, abstract = {Exosomes are small membrane vesicles released by different cell types, including hepatocytes, that play important roles in intercellular communication. We have previously demonstrated that hepatocyte-derived exosomes contain the synthetic machinery to form sphingosine-1-phosphate (S1P) in target hepatocytes resulting in proliferation and liver regeneration after ischemia/reperfusion (I/R) injury. We also demonstrated that the chemokine receptors, CXCR1 and CXCR2, regulate liver recovery and regeneration after I/R injury. In the current study, we sought to determine if the regulatory effects of CXCR1 and CXCR2 on liver recovery and regeneration might occur via altered release of hepatocyte exosomes. We found that hepatocyte release of exosomes was dependent upon CXCR1 and CXCR2. CXCR1-deficient hepatocytes produced fewer exosomes, whereas CXCR2-deficient hepatocytes produced more exosomes compared to their wild-type controls. In CXCR2-deficient hepatocytes, there was increased activity of neutral sphingomyelinase (Nsm) and intracellular ceramide. CXCR1-deficient hepatocytes had no alterations in Nsm activity or ceramide production. Interestingly, exosomes from CXCR1-deficient hepatocytes had no effect on hepatocyte proliferation, due to a lack of neutral ceramidase and sphingosine kinase. The data demonstrate that CXCR1 and CXCR2 regulate hepatocyte exosome release. The mechanism utilized by CXCR1 remains elusive, but CXCR2 appears to modulate Nsm activity and resultant production of ceramide to control exosome release. CXCR1 is required for packaging of enzymes into exosomes that mediate their hepatocyte proliferative effect.}, language = {en} } @article{ReichelRheinHofmannetal.2018, author = {Reichel, Martin and Rhein, Cosima and Hofmann, Lena M. and Monti, Juliana and Japtok, Lukasz and Langgartner, Dominik and F{\"u}chsl, Andrea M. and Kleuser, Burkhard and Gulbins, Erich and Hellerbrand, Claus and Reber, Stefan O. and Kornhuber, Johannes}, title = {Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation}, series = {Frontiers in Psychiatry}, volume = {9}, journal = {Frontiers in Psychiatry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-0640}, doi = {10.3389/fpsyt.2018.00496}, pages = {8}, year = {2018}, abstract = {Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28\% (P = 0.006) and secretory Asm activity by 47\% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40\% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.}, language = {en} } @article{NojimaFreemanSchusteretal.2016, author = {Nojima, Hiroyuki and Freeman, Christopher M. and Schuster, Rebecca M. and Japtok, Lukasz and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich and Lentsch, Alex B.}, title = {Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate}, series = {Journal of hepatology}, volume = {64}, journal = {Journal of hepatology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-8278}, doi = {10.1016/j.jhep.2015.07.030}, pages = {60 -- 68}, year = {2016}, abstract = {Background \& Aims: Exosomes are small membrane vesicles involved in intercellular communication. Hepatocytes are known to release exosomes, but little is known about their biological function. We sought to determine if exosomes derived from hepatocytes contribute to liver repair and regeneration after injury. Methods: Exosomes derived from primary murine hepatocytes were isolated and characterized biochemically and biophysically. Using cultures of primary hepatocytes, we tested whether hepatocyte exosomes induced proliferation of hepatocytes in vitro. Using models of ischemia/reperfusion injury and partial hepatectomy, we evaluated whether hepatocyte exosomes promote hepatocyte proliferation and liver regeneration in vivo. Results: Hepatocyte exosomes, but not exosomes from other liver cell types, induce dose-dependent hepatocyte proliferation in vitro and in vivo. Mechanistically, hepatocyte exosomes directly fuse with target hepatocytes and transfer neutral ceramidase and sphingosine kinase 2 (SK2) causing increased synthesis of sphingosine-1-phosphate (S1P) within target hepatocytes. Ablation of exosomal SK prevents the proliferative effect of exosomes. After ischemia/reperfusion injury, the number of circulating exosomes with proliferative effects increases. Conclusions: Our data shows that hepatocyte-derived exosomes deliver the synthetic machinery to form S1P in target hepatocytes resulting in cell proliferation and liver regeneration after ischemia/reperfusion injury or partial hepatectomy. These findings represent a potentially novel new contributing mechanism of liver regeneration and have important implications for new therapeutic approaches to acute and chronic liver disease. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{AlFadelFayyazJaptoketal.2016, author = {Al Fadel, Frdoos and Fayyaz, Susann and Japtok, Lukasz and Kleuser, Burkhard}, title = {Involvement of Sphingosine 1-Phosphate in Palmitate-Induced Non-Alcoholic Fatty Liver Disease}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {40}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000453213}, pages = {1637 -- 1645}, year = {2016}, abstract = {Background/Aims: Ectopic lipid accumulation in hepatocytes has been identified as a risk factor for the progression of liver fibrosis and is strongly associated with obesity. In particular, the saturated fatty acid palmitate is involved in initiation of liver fibrosis via formation of secondary metabolites by hepatocytes that in turn activate hepatic stellate cells (HSCs) in a paracrine manner Methods: a-smooth muscle actin-expression (alpha-SMA) as a marker of liver fibrosis was investigated via western blot analysis and immunofluorescence microscopy in HSCs (LX-2). Sphingolipid metabolism and the generation of the bioactive secondary metabolite sphingosine I-phosphate (SIP) in response to palmitate were analyzed by LC-MS/MS in hepatocytes (HepG2). To identify the molecular mechanism involved in the progression of liver fibrosis real-time PCR analysis and pharmacological modulation of SIP receptors were performed. Results: Palmitate oversupply increased intra- and extracellular SIP-concentrations in hepatocytes. Conditioned medium from HepG2 cells initiated fibrosis by enhancing alpha-SMA-expression in LX-2 in a S1P-dependent manner In accordance, fibrotic response in the presence of SIP was also observed in HSCs. Pharmacological inhibition of SIP receptors demonstrated that S1P(3) is the crucial receptor subtype involved in this process. Conclusion: SIP is synthesized in hepatocytes in response to palmitate and released into the extracellular environment leading to an activation of HSCs via the S1P(3) receptor (C) 2016 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{LaegerCastanoMartinezWernoetal.2018, author = {Laeger, Thomas and Castano-Martinez, Teresa and Werno, Martin W. and Japtok, Lukasz and Baumeier, Christian and Jonas, Wenke and Kleuser, Burkhard and Sch{\"u}rmann, Annette}, title = {Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {61}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-018-4595-1}, pages = {1459 -- 1469}, year = {2018}, abstract = {Aims/hypothesis Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. Methods We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ\%; CON) or low (4 kJ\%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. Results Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. Conclusion/interpretation Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.}, language = {en} } @article{McVeyKimTabuchietal.2017, author = {McVey, Mark J. and Kim, Michael and Tabuchi, Arata and Srbely, Victoria and Japtok, Lukasz and Arenz, Christoph and Rotstein, Ori and Kleuser, Burkhard and Semple, John W. and Kuebler, Wolfgang M.}, title = {Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets}, series = {American journal of physiology : Lung cellular and molecular physiology}, volume = {312}, journal = {American journal of physiology : Lung cellular and molecular physiology}, number = {5}, publisher = {American Physiological Society}, address = {Bethesda}, issn = {1040-0605}, doi = {10.1152/ajplung.00317.2016}, pages = {625 -- 637}, year = {2017}, abstract = {Pulmonary complications from stored blood products are the leading cause of mortality related to transfusion. Transfusion-related acute lung injury is mediated by antibodies or bioactive mediators, yet underlying mechanisms are incompletely understood. Sphingolipids such as ceramide regulate lung injury, and their composition changes as a function of time in stored blood. Here, we tested the hypothesis that aged platelets may induce lung injury via a sphingolipid-mediated mechanism. To assess this hypothesis, a two-hit mouse model was devised. Recipient mice were treated with 2 mg/kg intraperitoneal lipopolysaccharide (priming) 2 h before transfusion of 10 ml/kg stored (1-5 days) platelets treated with or without addition of acid sphingomyelinase inhibitor ARC39 or platelets from acid sphingomyelinase-deficient mice, which both reduce ceramide formation. Transfused mice were examined for signs of pulmonary neutrophil accumulation, endothelial barrier dysfunction, and histological evidence of lung injury. Sphingolipid profiles in stored platelets were analyzed by mass spectrophotometry. Transfusion of aged platelets into primed mice induced characteristic features of lung injury, which increased in severity as a function of storage time. Ceramide accumulated in platelets during storage, but this was attenuated by ARC39 or in acid sphingomyelinase-deficient platelets. Compared with wild-type platelets, transfusion of ARC39-treated or acid sphingomyelinase-deficient aged platelets alleviated lung injury. Aged platelets elicit lung injury in primed recipient mice, which can be alleviated by pharmacological inhibition or genetic deletion of acid sphingomyelinase. Interventions targeting sphingolipid formation represent a promising strategy to increase the safety and longevity of stored blood products.}, language = {en} } @article{HoehnJerniganJaptoketal.2017, author = {Hoehn, Richard S. and Jernigan, Peter L. and Japtok, Lukasz and Chang, Alex L. and Midura, Emily F. and Caldwell, Charles C. and Kleuser, Burkhard and Lentsch, Alex B. and Edwards, Michael J. and Gulbins, Erich and Pritts, Timothy A.}, title = {Acid sphingomyelinase inhibition in stored erythrocytes reduces transfusion-associated lung inflammation}, series = {Annals of surgery : a monthly review of surgical science and practice}, volume = {265}, journal = {Annals of surgery : a monthly review of surgical science and practice}, number = {1}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0003-4932}, doi = {10.1097/SLA.0000000000001648}, pages = {218 -- 226}, year = {2017}, abstract = {Objective: We aimed to identify the role of the enzyme acid sphingomyelinase in the aging of stored units of packed red blood cells (pRBCs) and subsequent lung inflammation after transfusion. Summary Background Data: Large volume pRBC transfusions are associated with multiple adverse clinical sequelae, including lung inflammation. Microparticles are formed in stored pRBCs over time and have been shown to contribute to lung inflammation after transfusion. Methods: Human and murine pRBCs were stored with or without amitriptyline, a functional inhibitor of acid sphingomyelinase, or obtained from acid sphingomyelinase-deficient mice, and lung inflammation was studied in mice receiving transfusions of pRBCs and microparticles isolated from these units. Results: Acid sphingomyelinase activity in pRBCs was associated with the formation of ceramide and the release of microparticles. Treatment of pRBCs with amitriptyline inhibited acid sphingomyelinase activity, ceramide accumulation, and microparticle production during pRBC storage. Transfusion of aged pRBCs or microparticles isolated from aged blood into mice caused lung inflammation. This was attenuated after transfusion of pRBCs treated with amitriptyline or from acid sphingomyelinase-deficient mice. Conclusions: Acid sphingomyelinase inhibition in stored pRBCs offers a novel mechanism for improving the quality of stored blood.}, language = {en} } @article{FolkessonVorkapicGulbinsetal.2017, author = {Folkesson, Maggie and Vorkapic, Emina and Gulbins, Erich and Japtok, Lukasz and Kleuser, Burkhard and Welander, Martin and L{\"a}nne, Toste and W{\aa}gs{\"a}ter, Dick}, title = {Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms}, series = {Journal of vascular surgery}, volume = {65}, journal = {Journal of vascular surgery}, number = {4}, publisher = {Elsevier}, address = {New York}, issn = {0741-5214}, doi = {10.1016/j.jvs.2015.12.056}, pages = {1171 -- 1179}, year = {2017}, abstract = {Background: Abdominal aortic aneurysm (AAA) is a deadly irreversible weakening and distension of the abdominal aortic wall. The pathogenesis of AAA remains poorly understood. Investigation into the physical and molecular characteristics of perivascular adipose tissue (PVAT) adjacent to AAA has not been done before and is the purpose of this study. Methods and Results: Human aortae, periaortic PVAT, and fat surrounding peripheral arteries were collected from patients undergoing elective surgical repair of AAA. Control aortas were obtained from recently deceased healthy organ donors with no known arterial disease. Aorta and PVAT was found in AAA to larger extent compared with control aortas. Immunohistochemistry revealed neutrophils, macrophages, mast cells, and T-cells surrounding necrotic adipocytes. Gene expression analysis showed that neutrophils, mast cells, and T-cells were found to be increased in PVAT compared with AAA as well as cathepsin K and S. The concentration of ceramides in PVAT was determined using mass spectrometry and correlated with content of T-cells in the PVAT. Conclusions: Our results suggest a role for abnormal necrotic, inflamed, proteolytic adipose tissue to the adjacent aneurysmal aortic wall in ongoing vascular damage.}, language = {en} } @article{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-57725-0}, pages = {1 -- 10}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time-and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @article{ChakrabortyChenBornhorstetal.2015, author = {Chakraborty, Sudipta and Chen, Pan and Bornhorst, Julia and Schwerdtle, Tanja and Schumacher, Fabian and Kleuser, Burkhard and Bowman, Aaron B. and Aschner, Michael A.}, title = {Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C-elegans}, series = {Metallomics : integrated biometal science}, volume = {7}, journal = {Metallomics : integrated biometal science}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c5mt00052a}, pages = {847 -- 856}, year = {2015}, language = {en} } @article{SchumacherChakrabortyKleuseretal.2015, author = {Schumacher, Fabian and Chakraborty, Sudipta and Kleuser, Burkhard and Gulbins, Erich and Schwerdtle, Tanja and Aschner, Michael A. and Bornhorst, Julia}, title = {Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans}, series = {Talanta : the international journal of pure and applied analytical chemistry}, volume = {144}, journal = {Talanta : the international journal of pure and applied analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-9140}, doi = {10.1016/j.talanta.2015.05.057}, pages = {71 -- 79}, year = {2015}, abstract = {Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{BeckmannSchumacherKleuseretal.2021, author = {Beckmann, Nadine and Schumacher, Fabian and Kleuser, Burkhard and Gulbins, Erich and Nomellini, Vanessa and Caldwell, Charles C.}, title = {Burn injury impairs neutrophil chemotaxis through increased ceramide}, series = {Shock : injury, inflammation, and sepsis, laboratory and clinical approaches}, volume = {56}, journal = {Shock : injury, inflammation, and sepsis, laboratory and clinical approaches}, number = {1}, publisher = {Lippincott Williams \& Wilkins}, address = {Hagerstown, Md.}, issn = {1073-2322}, doi = {10.1097/SHK.0000000000001693}, pages = {125 -- 132}, year = {2021}, abstract = {Infection is a common and often deadly complication after burn injury. A major underlying factor is burn-induced immune dysfunction, particularly with respect to neutrophils as the primary responders to infection. Temporally after murine scald injury, we demonstrate impaired bone marrow neutrophil chemotaxis toward CXCL1 ex vivo. Additionally, we observed a reduced recruitment of neutrophils to the peritoneal after elicitation 7 days after injury. We demonstrate that neutrophil ceramide levels increase after burn injury, and this is associated with decreased expression of CXCR2 and blunted chemotaxis. A major signaling event upon CXCR2 activation is Akt phosphorylation and this was reduced when ceramide was elevated. In contrast, PTEN levels were elevated and PTEN-inhibition elevated phospho-Akt levels and mitigated the burn-induced neutrophil chemotaxis defect. Altogether, this study identifies a newly described pathway of ceramide-mediated suppression of neutrophil chemotaxis after burn injury and introduces potential targets to mitigate this defect and reduce infection-related morbidity and mortality after burn.}, language = {en} } @article{SpeckmannSchulzHilleretal.2017, author = {Speckmann, Bodo and Schulz, Sarah and Hiller, Franziska and Hesse, Deike and Schumacher, Fabian and Kleuser, Burkhard and Geisel, Juergen and Obeid, Rima and Grune, Tilman and Kipp, Anna Patricia}, title = {Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice}, series = {The journal of nutritional biochemistry}, volume = {48}, journal = {The journal of nutritional biochemistry}, publisher = {Elsevier}, address = {New York}, issn = {0955-2863}, doi = {10.1016/j.jnutbio.2017.07.002}, pages = {112 -- 119}, year = {2017}, abstract = {The average intake of the essential trace element selenium (Se) is below the recommendation in most European countries, possibly causing sub-optimal expression of selenoproteins. It is still unclear how a suboptimal Se status may affect health. To mimic this situation, mice were fed one of three physiologically relevant amounts of Se. We focused on the liver, the organ most sensitive to changes in the Se supply indicated by hepatic glutathione peroxidase activity. In addition, liver is the main organ for synthesis of methyl groups and glutathione via one-carbon metabolism. Accordingly, the impact of Se on global DNA methylation, methylation capacity, and gene expression was assessed. We observed higher global DNA methylation indicated by LINE1 methylation, and an increase of the methylation potential as indicated by higher S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio and by elevated mRNA expression of serine hydroxymethyltransferase in both or either of the Se groups. Furthermore, increasing the Se supply resulted in higher plasma concentrations of triglycerides. Hepatic expression of glycolytic and lipogenic genes revealed consistent Se dependent up-regulation of glucokinase. The sterol regulatory element-binding transcription factor 1 (Srebf1) was also up-regulated by Se. Both effects were confirmed in primary hepatocytes. In contrast to the overall Se-dependent increase of methylation capacity, the up-regulation of Srebf1 expression was paralleled by reduced local methylation of a specific CpG site within the Srebf1 gene. Thus, we provided evidence that Se-dependent effects on lipogenesis involve epigenetic mechanisms. (C) 2017 The Authors. Published by Elsevier Inc.}, language = {en} }