@article{VirtaKochRoslundetal.2005, author = {Virta, P. and Koch, Andreas and Roslund, M. U. and Mattjus, P. and Kleinpeter, Erich and Kronberg, L. and Sjoholm, R. and Klika, Karel D.}, title = {Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives}, issn = {1477-0520}, year = {2005}, abstract = {Four derivatives of 2,6-diaminopurine (1) were synthesised and characterised. When 1 was reacted with chloroacetaldehyde, 5-aminoimidazo[2,1- i] purine (2), 9-aminoimidazo[2,1-b]purine (3), 9-aminoimidazo[1,2- a]purine (4) and diimidazo[2,1-b: 2', 1'-i]purine (5) were formed. The purified products (3 - 5) were fully characterised by MS, complete NMR assignments as well as fluorescence and UV spectroscopy. The purified, isolated yields of these products ( 3 - 5) varied from 2.5 to 30\%. The relative stability of different tautomers was investigated by theoretical calculations. Fluorescence characteristics are also discussed and compared to the starting material 1 and a reference molecule 2-aminopurine}, language = {en} } @article{HeydenreichKochKovacsetal.2004, author = {Heydenreich, Matthias and Koch, Andreas and Kovacs, J. and Toth, G. and Kleinpeter, Erich}, title = {Electronic influences on (3)J(C,H) coupling constants via -S-, -S(O)- and -SO2--: their determination, calculation and comparison of detection methods}, issn = {0749-1581}, year = {2004}, abstract = {(3)J(C,H) coupling constants via a sulfur atom in two series of compounds, both including a sulfide, a sulfoxide and a sulfone, were detected experimentally and calculated by quantum mechanical methods. In the first series (1-3) the coupling between a hydrogen, bonded to an Sp(3) carbon, and an Sp(2) carbon is treated; the second series (4- 6) deals with the coupling between a hydrogen, bonded to an Sp3 carbon, and an Sp3 carbon. Different pulse sequences (broadband HMBC, SelJres, 1D HSQMBC, J-HMBC-2, selective J-resolved long-range experiment and IMPEACH-MBC) proved to be useful in determining the long-range (3)J(C,H) coupling constants. However, the dynamic behaviour of two of the compounds (4 and 6) led to weighted averages of the two coupling constants expected (concerning equatorial and axial positions of the corresponding hydrogens). DFT calculations proved to be useful to calculate not only the (3)J(C,H) coupling constants but also the different contributions of FC, PSO, DSO and SD terms; the calculation of the Fermi contact term (FC) was found to be sufficient for the correct estimation of (3)J(C,H) coupling constants. Copyright (C) 2004 John Wiley Sons, Ltd}, language = {en} } @article{KochMikhovaKleinpeter2004, author = {Koch, Andreas and Mikhova, Bozhana and Kleinpeter, Erich}, title = {Ab initio MP2/GIAO/NBO study of the delta-syn-axial effect in C-13 NMR spectroscopy}, issn = {0022-2860}, year = {2004}, abstract = {The C-13 chemical shifts of 20 rigid bicyclic compounds have been calculated with ab initio HF and MP2 methods. The calculations showed very good reproducibility of the experimental values. The molecular orbital interactions in the rigid, nearly planar delta-syn-axial fragments in the isomeric groups of norbornane derivatives 1.x-4.x were studied in detail and were employed to explain the deshielding delta-syn-axial effect in C-13 NMR spectroscopy. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{KleinpeterKoch2018, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Stable Carbenes or Betaines?}, series = {European journal of organic chemistry}, volume = {2018}, journal = {European journal of organic chemistry}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201800462}, pages = {3114 -- 3121}, year = {2018}, abstract = {The anisotropy effect in H-1 NMR spectroscopy can be readily employed to indicate the position of carbene/betaine mesomeric equilibria. NR2 substituted carbene/betaines tend to adopt betaine structures, whereas in the absence of NR2 substituents, the betaine structures cannot stabilise the structure through both -donation effects of the NMe2 groups and the electronegativity of the nitrogen atoms, and the corresponding carbene-like structures are preferred. These conclusions are supported by calculated bond orders and (C-13)/ppm values. The spatial magnetic properties of isonitriles and carbon monoxide, which can be counted as stable carbenes or, at least, as carbene-analogues, also exist as stable betaine structures, which is again supported by structural and magnetic properties.}, language = {en} } @article{HansenKochKleinpeter2018, author = {Hansen, Poul Erik and Koch, Andreas and Kleinpeter, Erich}, title = {Ring current and anisotropy effects on OH chemical shifts in resonance-assisted intramolecular H-bonds}, series = {Tetrahedron letters}, volume = {59}, journal = {Tetrahedron letters}, number = {23}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2018.05.006}, pages = {2288 -- 2292}, year = {2018}, abstract = {Ring current effects on resonance-assisted and intramolecularly bridged hydrogen bond protons for 10-hydroxybenzo[h]quinoline 1 and a number of related compounds were calculated and the through-space NMR shieldings (TSNMRS) obtained hereby visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. These calculations revealed that this through-space effect is comparably large (up to 2 ppm) dependent on the position of the intramolecularly bridged OH proton, and therefore, contribute considerably to the chemical shift of the latter making it questionable to use delta(OH)/ppm in the estimation of intramolecular hydrogen bond strength without taking this into account. Furthermore, the anisotropy effects of additional groups on the aromatic moiety (e.g. the carbonyl group in salicylaldehyde or in o-hydroxyacetophenone of ca. 0.6 ppm deshielding) should also be considered. These through-space effects need to be taken into account when using OH chemical shifts to estimate hydrogen bond strength.}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Benzenium Ion}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {123}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.9b03121}, pages = {4443 -- 4451}, year = {2019}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of the benzenium cation (C6H7+) 1 and of +/- I/M-substituted analogues C6H6X+ 3-8 [X = -Me, -CF3, -NH2, -NO2, -NO, -SiH3] have been calculated using the gauge-independent atomic orbital perturbation method employing the nucleus-independent chemical shift concept, and iso-chemical-shielding surfaces of various sizes and directions have been observed. The TSNMRS values were employed to compare the spatial magnetic properties (TSNMRS) of benzene and the benzenium ion 1 and then further compared with analogues 3-8, to answer the question whether the electronic structures of 1 and 3-8 are still similar to those of aromatic species or somewhat similar to the antiaromatic cyclopentadienyl cation 2, supported by structural data and delta(C-13)/ppm values.}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Is the term "Carbene" justified for remote N-heterocyclic carbenes (r-NHCs) and abnormal N-heterocyclic carbenes (aNHCs/MICs)?}, series = {Tetrahedron}, volume = {75}, journal = {Tetrahedron}, number = {11}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2019.02.005}, pages = {1548 -- 1554}, year = {2019}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of typical N-heterocyclic carbenes NHCs, r-NHCs, a-NHCs and MICs have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. Prior to that both structures and 13C chemical shifts were calculated and in case of isolated carbenes the computed δ(13C)/ppm values compared (as a quality criterion for obtained structures) with the experimental ones. The TSNMRS values of the studied carbenes, which are in mesomeric equilibrium with zwitterionic (ylide/betaine/mesoionic) resonance contributors, are employed to qualify and quantify the present electronic structure and if the term carbene is still justified to denote the compounds studied. The results, thus obtained from spatial magnetic properties (TSNMRS), are compared with the geometry of the compounds, the corresponding WIBERG's bond index values, and the 13C chemical shifts especially of the carbene electron-deficient centre.}, language = {en} } @article{KleinpeterKoch2022, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Cyclazines-structure and aromaticity or antiaromaticity on the magnetic criterion}, series = {European journal of organic chemistry}, volume = {2022}, journal = {European journal of organic chemistry}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202101362}, pages = {12}, year = {2022}, abstract = {Structure and spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of all ten cycl[2.2.2]azine to cycl[4.4.4]azine, hetero-analogues and the corresponding hydrocarbons have been calculated at the B3LYP/6-311G(d,p) theory level using the GIAO perturbation method and employing the nucleus independent chemical shift (NICS) concept. The TSNMRS values (actually, the ring current effect as measurable in H-1 NMR spectroscopy) are visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction, and employed to readily qualify and quantify the degree of (anti)aromaticity. Results are confirmed by NMR [delta(H-1)/ppm, delta(N-15)/ppm] and geometry (planar, twisted, bow-shaped) data. The cyclazines N[2.2.2](-) up to N[2.4.4](-) are planar or at most slightly bowl-shaped and, due to coherent peripheral ring currents (except in N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+)), develop aromaticity or anti-aromaticity of the whole molecules dependent on the number of peripheral conjugated pi electrons. The cyclazines N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+) develop two ring currents of different direction within the same molecule, in which the dominating ring current proves to be paratropic (in N[3.3.4](+) diatropic) including the nodal N p(z) lone pair into the conjugation. The residual cyclazines N[3.4.4], N[4.4.4](-) and N[4.4.4](+) are heavily twisted and, therefore, are not developing peripheral or diverse ring currents. The TSNMRS information about cyclazines and the parent tricyclic annulene analogues is congruent subject to structure and number of peripheral or internal conjugated pi electrons, the corresponding (anti)aromaticity is in unequivocal accordance with Huckel's rule.}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {The 13 C chemical shift and the anisotropy effect of the carbene electron-deficient centre}, series = {Magnetic resonance in chemistry}, volume = {58}, journal = {Magnetic resonance in chemistry}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4979}, pages = {280 -- 292}, year = {2019}, abstract = {Both the C-13 chemical shift and the calculated anisotropy effect (spatial magnetic properties) of the electron-deficient centre of stable, crystalline, and structurally characterized carbenes have been employed to unequivocally characterize potential resonance contributors to the present mesomerism (carbene, ylide, betaine, and zwitter ion) and to determine quantitatively the electron deficiency of the corresponding carbene carbon atom. Prior to that, both structures and C-13 chemical shifts were calculated and compared with the experimental delta(C-13)/ppm values and geometry parameters (as a quality criterion for obtained structures).}, language = {en} } @article{KleinpeterKoch2020, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Bent Allenes or Di-1,3-betaines-An Answer Given on the Magnetic Criterion}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {124}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {16}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.0c01392}, pages = {3180 -- 3190}, year = {2020}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of bent allene 1, the corresponding C-extended 1,3-butadiene derivative 2, and a number of related compounds 3 -20 have been calculated using the gauge-independent atomic orbital perturbation method, employing the nucleus-independent chemical shift concept and visualized as isochemical shielding surfaces of various sizes and directions. Prior to that, both structures and C-13 chemical shifts were calculated and compared with available experimental bond lengths and delta(C-13)/ppm values (also, as a quality criterion for the computed structures). Bond lengths, the delta(C-13)/ppm, and the TSNMRS values are employed to qualify and quantify the electronic structure of the studied compounds in terms of dative or classical electron-sharing bonds.}, language = {en} }