@article{KozlevcarGamezdeGelderetal.2011, author = {Kozlevcar, Bojan and Gamez, Patrick and de Gelder, Rene and Jaglicic, Zvonko and Strauch, Peter and Kitanovski, Nives and Reedijk, Jan}, title = {Counterion and solvent effects on the primary coordination sphere of copper(II) Bis(3,5-dimethylpyrazol-1-yl)acetic acid coordination compounds}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {24}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1434-1948}, doi = {10.1002/ejic.201100410}, pages = {3650 -- 3655}, year = {2011}, abstract = {Four copper(II) coordination compounds with the neutral ligand bis(3,5-dimethylpyrazol-1-yl)acetic acid (Hbdmpza, C(12)H(16)N(4)O(2)) and its anionic form (bdmpza(-)), namely [Cu(Hbdmpza)(2)](HSO(4))(2) (1), [Cu(Hbdmpza)(2)]Cl(2) (2), [Cu(bdmpza)(2)](CH(3)COOH)(H(2)O) (3), and [Cu(bdmpza)(2)][Cu(2)(O(2)CCH(3))(4)] (4) have been synthesized starting from different metal salts. All the compounds have been fully characterized by physical and analytical methods. In addition, a single-crystal XRD analysis revealed the 3D structure of 1, which exhibits tridentate, vicinal N,N,O-coordination of two symmetry-related Hbdmpza ligands in an elongated octahedral arrangement with four equatorial nitrogen atoms and two axial oxygen atoms. The neutral carboxylic moiety acts as a hydrogen-bond donor to a HSO(4)(-) counterion. The two hydrogensulfates form a unique hydrogen-bonded pair (HSO(4)(-))(2) with very short O center dot center dot center dot O distances (2.59 angstrom) bridged between adjacent [Cu(HL)(2)](2+) coordination units. Also a short O center dot center dot center dot O contact (2.54 angstrom) is present between the C-OH and an 0 of a hydrogensulfate. A characteristic IR C=O vibration is observed at 1700 cm(-1) for 1 and 2, whereas the v(as)(O(2)C) vibration is present at 1650 cm(-1) for 3 and 4. These IR data strongly suggest the presence of Hbdmpza ligands in 1 and 2 and the deprotonated form bdmpza- in 3 and 4. A mononuclear coordination unit [CuL(2)], as proven for 1 by X-ray diffraction, is also proposed for the other compounds 2-4. In compound 4, an additional dinuclear [Cu(2)(O(2)CCH(3))(4)] neutral coordination unit is present, as deduced from the vibration bands v(as)(O(2)C) at 1600 cm(-1) and v(s)(O(2)C) at 1420 cm(-1), which are typical of a carboxylate function, and from the two-species analysis of the chi(M)T(T) curve of the magnetic susceptibility data (2J = -322 cm(-1)). Also, the EPR spectra recorded at different temperatures agree with this structure.}, language = {en} } @article{VaskovaKitanovskiJaglicicetal.2014, author = {Vaskova, Zuzana and Kitanovski, Nives and Jaglicic, Zvonko and Strauch, Peter and Ruzickova, Zdenka and Valigura, Dusan and Koman, Marian and Kozlevcar, Bojan and Moncol, Jan}, title = {Synthesis and magneto-structural characterization of copper(II) nitrobenzoate complexes containing nicotinamide or methylnicotinamide ligands}, series = {Polyhedron : the international journal of inorganic and organometallic chemistry}, volume = {81}, journal = {Polyhedron : the international journal of inorganic and organometallic chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-5387}, doi = {10.1016/j.poly.2014.07.017}, pages = {555 -- 563}, year = {2014}, abstract = {Three new copper(II) 4-nitrobenzoato coordination compounds (4-NO(2)bz(-) = 4-nitrobenzoate anions) with N-methylnicotinamide (mna) [Cu(4-NO(2)bz)(2)(mna)(2)(H2O)] (1), [Cu(4-NO(2)bz)(2)(mu-mna)(H2O)](2) (2) and [Cu(mu-4-NO(2)bz)(2)(mna)](2) (3) were synthesized and characterized. Due to a comparison, additional two related compounds [Cu(3,5-(NO2)(2)bz)(2)(mna)(2)(H2O)] (4) (nia = nicotinamide, 3,5-(NO2)(2)bz(-) = 3,5-dinitrobenzoate anions) and [Cu(mu-2-NO(2)bz)(2)(mna)](2) (5) (2-NO(2)bz(-) = 2-nitrobenzoate anions) were isolated. The mononuclear compounds with mna 1 and nia 4 show CuO2N2O chromophores with the water molecule placed at the apex of the square pyramid. The square-pyramidal coordination sphere CuO3NO in 2 differs to CuO2N2O in 1 and 4. Differently, the water molecule is in 2 at the basal-plane, while two mna molecules serve also as bridges via N-py and 0-amido enabling a dinuclear molecular structure 1, 2 and 4 are paramagnetic though a dinuclear structure is seen in 2, while a clear-cut strong antiferromagnetic (AFM) coupling (2J -300 cm(-1)) is found for the compounds 3 and 5. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }