@article{WangKaunePerlichetal.2010, author = {Wang, Weijia and Kaune, Gunar and Perlich, Jan and Paradakis, Christine M. and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Schlage, K. and R{\"o}hlsberger, Ralf and Roth, Stephan V. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Swelling and switching kinetics of gold coated end-capped poly(N-isopropylacrylamide) thin films}, issn = {0024-9297}, doi = {10.1021/Ma902637a}, year = {2010}, abstract = {Thin thermoresponsive hydrogel films of poly(N-isopropylacrylamide) end-capped with n-butyltrithiocarbonate(nbc- PNIPAM) oil si I icon supports with a gold layer on top, causing an asymmetric confinement, are investigated. For two different gold layer thicknesses (nominally 0.4 and 5 rim), the swelling and switching kinetics are probed with in situ neutron reflectivity. With a temperature jump from 23 to 40 degrees C the film is switched from a swollen into a collapsed state. For the thin gold layer this switching is faster as compared to the thick gold layer. The switching is a two-step process of water release and a subsequent structural relaxation. fit swelling and deswelling cycles, aging of the films is probed. After five cycles, the film exhibits enhanced water storage capacity. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that these gold coated nbc-PNIPAM films do not age with respect to the inner structure but slightly roughen at the gold surface. As revealed by atomic force microscopy, the morphology of the gold layer is changed by the water uptake and release.}, language = {en} } @article{ZhongMetwalliKauneetal.2012, author = {Zhong, Qi and Metwalli, Ezzeldin and Kaune, Gunar and Rawolle, Monika and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm25401h}, pages = {5241 -- 5249}, year = {2012}, abstract = {The switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) (PMDEGA) are investigated. Homogeneous and smooth PMDEGA films with a thickness of 35.9 nm are prepared on silicon substrates by spin coating. As probed with white light interferometry, PMDEGA films with a thickness of 35.9 nm exhibit a phase transition temperature of the lower critical solution temperature (LCST) type of 40 degrees C. In situ neutron reflectivity is performed to investigate the thermo-responsive behavior of these PMDEGA hydrogel films in response to a sudden thermal stimulus in deuterated water vapor atmosphere. The collapse transition proceeds in a complex way which can be seen as three steps. The first step is the shrinkage of the initially swollen film by a release of water. In the second step the thickness remains constant with water molecules embedded in the film. In the third step, perhaps due to a conformational rearrangement of the collapsed PMDEGA chains, water is reabsorbed from the vapor atmosphere, thereby giving rise to a relaxation process. Both the shrinkage and relaxation processes can be described by a simple model of hydrogel deswelling.}, language = {en} } @article{ZhongMetwalliRawolleetal.2015, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Rehydration of Thermoresponsive Poly(monomethoxydiethylene glycol acrylate) Films Probed in Situ by Real-Time Neutron Reflectivity}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b00645}, pages = {3604 -- 3612}, year = {2015}, abstract = {The rehydration of thermoresponsive poly(monomethoxydiethylene glycol acrylate) (PMDEGA) films exhibiting a lower critical solution temperature (LCST) type demixing phase transition in aqueous environments, induced by a decrease in temperature, is investigated in situ with real-time neutron reflectivity. Two different starting conditions (collapsed versus partially swollen chain conformation) are compared. In one experiment, the temperature is reduced from above the demixing temperature to well below the demixing temperature. In a second experiment, the starting temperature is below the demixing temperature, but within the transition regime, and reduced to the same final temperature. In both cases, the observed rehydration process can be divided into three stages: first condensation of water from the surrounding atmosphere, then absorption of water by the PMDEGA film and evaporation of excess water, and finally, rearrangement of the PMDEGA chains. The final rehydrated film is thicker and contains more absorbed water as compared with the initially swollen film at the same temperature well below the demixing temperature.}, language = {en} } @article{ZhongMetwalliRawolleetal.2017, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andre and Papadakis, Christine M. and Cubitt, Robert and Wang, Jiping and Mueller-Buschbaum, Peter}, title = {Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {124}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.07.066}, pages = {263 -- 273}, year = {2017}, abstract = {The isothermal vacuum-induced dehydration of thin films made of poly(methoxy diethylene glycol acrylate) (PMDEGA), which were swollen under ambient conditions, is studied. The dehydration behavior of the homopolymer film as well as of a nanostructured film of the amphiphilic triblock copolymer polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene, abbreviated as PS-b-PMDEGA-b-PS, are probed, and compared to the thermally induced dehydration behavior of such thin thermo-responsive films when they pass through their LCST-type coil-to globule collapse transition. The dehydration kinetics is followed by in-situ neutron reflectivity measurements. Contrast results from the use of deuterated water. Water content and film thickness are significantly reduced during the process, which can be explained by Schott second order kinetics theory for both films. The water content of the dehydrated equilibrium state from this model is very close to the residual water content obtained from the final static measurements, indicating that residual water still remains in the film even after prolonged exposure to the vacuum. In the PS-b-PMDEGA-b-PS film that shows micro-phase separation, the hydrophobic PS domains modify the dehydration process by hindering the water removal, and thus retarding dehydration by about 30\%. Whereas residual water remains tightly bound in the PMDEGA domains, water is completely removed from the PS domains of the block copolymer film. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZhongMetwalliRawolleetal.2016, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andre and Papadakis, Christine M. and Cubitt, Robert and Wang, Jiping and Mueller-Buschbaum, Peter}, title = {Influence of Hydrophobic Polystyrene Blocks on the Rehydration of Polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene Films Investigated by in Situ Neutron Reflectivity}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b02279}, pages = {317 -- 326}, year = {2016}, abstract = {The rehydration of thermoresponsive polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene (PS-b-PMDEGA-b-PS) films forming a lamellar microphase-separated structure is investigated by in situ neutron reflectivity in a D2O vapor atmosphere. The rehydration of collapsed PS-b-PMDEGA-b-PS films is realized by a temperature change from 45 to 23 degrees C and comprises (1) condensation and absorption of D2O, (2) evaporation of D2O, and (3) reswelling of the film due to internal rearrangement. The hydrophobic PS layers hinder the absorption of condensed D2O, and a redistribution of embedded D2O between the hydrophobic PS layers and the hydrophilic PMDEGA layers is observed. In contrast, the rehydration of semiswollen PS-b-PMDEGA-b-PS films (temperature change from 35 to 23 degrees C) shows two prominent differences: A thicker D2O layer condenses on the surface, causing a more enhanced evaporation of D2O. The rehydrated films differ in film thickness and volume fraction of D2O, which is due to the different thermal protocols, although the final temperature is identical.}, language = {en} } @article{ZhongMetwalliRawolleetal.2013, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Structure and Thermal Response of Thin Thermoresponsive Polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene Films}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {46}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma400627u}, pages = {4069 -- 4080}, year = {2013}, abstract = {Thin thermoresponsive films of the triblock copolymer polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene (P(S-b-MDEGA-b-S)) are investigated on silicon substrates. By spin coating, homogeneous and smooth films are prepared for a range of film thicknesses from 6 to 82 nm. Films are stable with respect to dewetting as investigated with optical microscopy and atomic force microscopy. P(S-b-MDEGA-b-S) films with a thickness of 39 nm exhibit a phase transition of the lower critical solution temperature (LCST) type at 36.5 degrees C. The swelling and the thermoresponsive behavior of the films with respect to a sudden thermal stimulus are probed with in-situ neutron reflectivity. In undersaturated water vapor swelling proceeds without thickness increase. The thermoresponse proceeds in three steps: First, the film rejects water as the temperature is above LCST. Next, it stays constant for 600 s, before the collapsed film takes up water again. With ATR-FTIR measurements, changes of bound water in the film caused by different thermal stimuli are studied. Hydrogen bonds only form between C=O and water in the swollen film. Above the LCST most hydrogen bonds with water are broken, but some amount of bound water remains inside the film in agreement with the neutron reflectivity data. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that the inner lateral structure is not significantly influenced by the different thermal stimuli.}, language = {en} }