@article{RusakTanentzapKlugetal.2018, author = {Rusak, James A. and Tanentzap, Andrew J. and Klug, Jennifer L. and Rose, Kevin C. and Hendricks, Susan P. and Jennings, Eleanor and Laas, Alo and Pierson, Donald C. and Ryder, Elizabeth and Smyth, Robyn L. and White, D. S. and Winslow, Luke A. and Adrian, Rita and Arvola, Lauri and de Eyto, Elvira and Feuchtmayr, Heidrun and Honti, Mark and Istvanovics, Vera and Jones, Ian D. and McBride, Chris G. and Schmidt, Silke Regina and Seekell, David and Staehr, Peter A. and Guangwei, Zhu}, title = {Wind and trophic status explain within and among-lake variability of algal biomass}, series = {Limnology and oceanography letters / ASLO, Association for the Sciences of Limnology and Oceanography}, volume = {3}, journal = {Limnology and oceanography letters / ASLO, Association for the Sciences of Limnology and Oceanography}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {2378-2242}, doi = {10.1002/lol2.10093}, pages = {409 -- 418}, year = {2018}, abstract = {Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within-lake variation in biomass using high-frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high-frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within-lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high-frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides.}, language = {en} } @misc{BertilssonBurginCareyetal.2013, author = {Bertilsson, Stefan and Burgin, Amy and Carey, Cayelan C. and Fey, Samuel B. and Grossart, Hans-Peter and Grubisic, Lorena M. and Jones, Ian D. and Kirillin, Georgiy and Lennon, Jay T. and Shade, Ashley and Smyth, Robyn L.}, title = {The under-ice microbiome of seasonally frozen lakes}, series = {Limnology and oceanography}, volume = {58}, journal = {Limnology and oceanography}, number = {6}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2013.58.6.1998}, pages = {1998 -- 2012}, year = {2013}, abstract = {Compared to the well-studied open water of the "growing" season, under-ice conditions in lakes are characterized by low and rather constant temperature, slow water movements, limited light availability, and reduced exchange with the surrounding landscape. These conditions interact with ice-cover duration to shape microbial processes in temperate lakes and ultimately influence the phenology of community and ecosystem processes. We review the current knowledge on microorganisms in seasonally frozen lakes. Specifically, we highlight how under-ice conditions alter lake physics and the ways that this can affect the distribution and metabolism of auto-and heterotrophic microorganisms. We identify functional traits that we hypothesize are important for understanding under-ice dynamics and discuss how these traits influence species interactions. As ice coverage duration has already been seen to reduce as air temperatures have warmed, the dynamics of the under-ice microbiome are important for understanding and predicting the dynamics and functioning of seasonally frozen lakes in the near future.}, language = {en} } @article{GilingStaehrGrossartetal.2017, author = {Giling, Darren P. and Staehr, Peter A. and Grossart, Hans-Peter and Andersen, Mikkel Rene and Boehrer, Bertram and Escot, Carmelo and Evrendilek, Fatih and Gomez-Gener, Lluis and Honti, Mark and Jones, Ian D. and Karakaya, Nusret and Laas, Alo and Moreno-Ostos, Enrique and Rinke, Karsten and Scharfenberger, Ulrike and Schmidt, Silke R. and Weber, Michael and Woolway, R. Iestyn and Zwart, Jacob A. and Obrador, Biel}, title = {Delving deeper: Metabolic processes in the metalimnion of stratified lakes}, series = {Limnology and oceanography}, volume = {62}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.10504}, pages = {1288 -- 1306}, year = {2017}, abstract = {Many lakes exhibit seasonal stratification, during which they develop strong thermal and chemical gradients. An expansion of depth-integrated monitoring programs has provided insight into the importance of organic carbon processing that occurs below the upper mixed layer. However, the chemical and physical drivers of metabolism and metabolic coupling remain unresolved, especially in the metalimnion. In this depth zone, sharp gradients in key resources such as light and temperature co-occur with dynamic physical conditions that influence metabolic processes directly and simultaneously hamper the accurate tracing of biological activity. We evaluated the drivers of metalimnetic metabolism and its associated uncertainty across 10 stratified lakes in Europe and North America. We hypothesized that the metalimnion would contribute highly to whole-lake functioning in clear oligotrophic lakes, and that metabolic rates would be highly variable in unstable polymictic lakes. Depth-integrated rates of gross primary production (GPP) and ecosystem respiration (ER) were modelled from diel dissolved oxygen curves using a Bayesian approach. Metabolic estimates were more uncertain below the epilimnion, but uncertainty was not consistently related to lake morphology or mixing regime. Metalimnetic rates exhibited high day-to-day variability in all trophic states, with the metalimnetic contribution to daily whole-lake GPP and ER ranging from 0\% to 87\% and < 1\% to 92\%, respectively. Nonetheless, the metalimnion of low-nutrient lakes contributed strongly to whole-lake metabolism on average, driven by a collinear combination of highlight, low surface-water phosphorous concentration and high metalimnetic volume. Consequently, a single-sensor approach does not necessarily reflect whole-ecosystem carbon dynamics in stratified lakes.}, language = {en} }