@article{MathysKharchenkoHubrig1996, author = {Mathys, Gautier and Kharchenko, N. and Hubrig, Swetlana}, title = {A kinematical study of rapidly oscillating Ap stars}, year = {1996}, language = {en} } @article{HubrigMathys1993, author = {Hubrig, Swetlana and Mathys, Gautier}, title = {Mass loss, magnetic field and chemical inhomogenities in the he-weak star HD 21699}, year = {1993}, language = {en} } @article{HubrigMathys1995, author = {Hubrig, Swetlana and Mathys, Gautier}, title = {Properties of HgMn spectroscopic binaries from high spectral resolution observations}, year = {1995}, language = {en} } @article{SchmidtBaierBleyeretal.1994, author = {Schmidt, Hans-J{\"u}rgen and Baier, Frank W. and Bleyer, Ulrich and Hubrig, Swetlana and Meister, Claudia-Veronika and Schilbach, Elena and Tiersch, Heinz}, title = {Zum Wissenschaftler-Integrationsprogramm}, year = {1994}, language = {de} } @article{HubrigPlachindaHuenschetal.1994, author = {Hubrig, Swetlana and Plachinda, S. I. and H{\"u}nsch, M. and Schr{\"o}der, K.-P.}, title = {Search for magnetic fields in late-type giants}, year = {1994}, language = {en} } @article{HubrigMathys1994, author = {Hubrig, Swetlana and Mathys, Gautier}, title = {The evolutionary state of magnetic Ap stars}, year = {1994}, language = {en} } @article{HubrigMathys1995, author = {Hubrig, Swetlana and Mathys, Gautier}, title = {Some remarks on the origin of the abundance anomalies in HgMn stars}, year = {1995}, language = {en} } @article{MathysHubrig1995, author = {Mathys, Gautier and Hubrig, Swetlana}, title = {Magnetic fields of the HgMn spectros copic binaries chi Lup and 74 Aqr}, year = {1995}, language = {en} } @phdthesis{Hubrig1999, author = {Hubrig, Swetlana}, title = {Chemically peculiar stars : recent development and new directions}, address = {Potsdam}, pages = {getr. Z{\"a}hlung : graph. Darst.}, year = {1999}, language = {en} } @article{JaervinenHubrigIlyinetal.2017, author = {Jaervinen, S. P. and Hubrig, Swetlana and Ilyin, Ilya and Shenar, Tomer and Schoeller, M.}, title = {A search for spectral variability in the highly magnetized O9.7 V star HD 54879}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {338}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201713402}, pages = {952 -- 958}, year = {2017}, abstract = {The O9.7 V star HD 54879 possesses the second strongest magnetic field among the single, magnetic, O-type stars. In contrast to other magnetic O-type stars, the chemical abundance analysis of HD 54879 indicated a rather normal optical spectrum without obvious element enhancements or depletions. Furthermore, spectral variability was detected only in lines partly formed in the magnetosphere. As this star shows such a deviate, almost nonvariable, spectral behavior, we performed a deeper analysis of its spectral variability on different timescales using all currently available HARPSpol and FORS 2 spectropolarimetric observations. The longitudinal magnetic field strengths measured at different epochs indicate the presence of variability possibly related to stellar rotation, but the current data do not allow us yet to identify the periodicity of the field variation. As spectropolarimetric observations obtained at different epochs consist of subexposures with different integration times, we investigated spectral variability on timescales of minutes. The detected level of variability in line profiles of different elements is rather low, between 0.2 and 1.7\%, depending on the integration time of the exposures and the considered element.}, language = {en} } @article{SteffenHubrigTodtetal.2014, author = {Steffen, M. and Hubrig, Swetlana and Todt, Helge Tobias and Schoeller, M. and Hamann, Wolf-Rainer and Sandin, Christer and Sch{\"o}nberner, Detlef}, title = {Weak magnetic fields in central stars of planetary nebulae?}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {570}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201423842}, pages = {15}, year = {2014}, abstract = {Context. It is not yet clear whether magnetic fields play an essential role in shaping planetary nebulae (PNe), or whether stellar rotation alone and/or a close binary companion, stellar or substellar, can account for the variety of the observed nebular morphologies. Aims. In a quest for empirical evidence verifying or disproving the role of magnetic fields in shaping planetary nebulae, we follow up on previous attempts to measure the magnetic field in a representative sample of PN central stars. Methods. We obtained low-resolution polarimetric spectra with FORS2 installed on the Antu telescope of the VLT for a sample of 12 bright central stars of PNe with different morphologies, including two round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets are Wolf-Rayet type central stars. Results. For the majority of the observed central stars, we do not find any significant evidence for the existence of surface magnetic fields. However, our measurements may indicate the presence of weak mean longitudinal magnetic fields of the order of 100 Gauss in the central star of the young elliptical planetary nebula IC 418 as well as in the Wolf-Rayet type central star of the bipolar nebula Hen 2-113 and the weak emission line central star of the elliptical nebula Hen 2-131. A clear detection of a 250 G mean longitudinal field is achieved for the A-type companion of the central star of NGC 1514. Some of the central stars show a moderate night-to-night spectrum variability, which may be the signature of a variable stellar wind and/or rotational modulation due to magnetic features. Conclusions. Since our analysis indicates only weak fields, if any, in a few targets of our sample, we conclude that strong magnetic fields of the order of kG are not widespread among PNe central stars. Nevertheless, simple estimates based on a theoretical model of magnetized wind bubbles suggest that even weak magnetic fields below the current detection limit of the order of 100 G may well be sufficient to contribute to the shaping of the surrounding nebulae throughout their evolution. Our current sample is too small to draw conclusions about a correlation between nebular morphology and the presence of stellar magnetic fields.}, language = {en} } @article{HubrigSchoellerIlyinetal.2013, author = {Hubrig, Swetlana and Schoeller, M. and Ilyin, Ilya and Kharchenko, N. V. and Oskinova, Lida and Langer, N. and Gonzalez, J. F. and Kholtygin, A. F. and Briquet, Maryline}, title = {Exploring the origin of magnetic fields in massive stars - II. New magnetic field measurements in cluster and field stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {551}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGORI Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220721}, pages = {13}, year = {2013}, abstract = {Context. Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. Additional observations are of utmost importance to constrain the conditions that are conducive to magnetic fields and to determine first trends about their occurrence rate and field strength distribution. Aims. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FOcal Reducer low dispersion Spectrograph (FORS 2) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6 m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results. The presence of a magnetic field is confirmed in nine stars previously observed with FORS 1/2: HD36879, HD47839, CPD-28 2561, CPD-47 2963, HD93843, HD148937, HD149757, HD328856, and HD164794. New magnetic field detections at a significance level of at least 3 sigma were achieved in five stars: HD92206c, HD93521, HD93632, CPD-46 8221, and HD157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to previous kinematic studies, five magnetic O-type stars in our sample are candidate runaway stars.}, language = {en} } @article{CastroFossatiHubrigetal.2015, author = {Castro, Norberto and Fossati, Luca and Hubrig, Swetlana and Simon D{\´i}az, Sergio and Schoeller, Markus and Ilyin, Ilya and Carrol, Thorsten A. and Langer, Norbert and Morel, Thierry and Schneider, Fabian R. N. and Przybilla, Norbert and Herrero, Artemio and de Koter, Alex and Oskinova, Lida and Reisenegger, Andreas and Sana, Hugues}, title = {B fields in OB stars (BOB) Detection of a strong magnetic field in the O9.7 V star HD 54879}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {581}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425354}, pages = {14}, year = {2015}, abstract = {The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar evolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, and magnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2 and HARPS spectropolarimetric data, we present the first detection of a magnetic field in HD54879, a single slowly rotating O9.7 V star. Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field with a maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere code FASTWIND results in an effective temperature and a surface gravity of 33 000 +/- 1000K and 4.0 +/- 0.1 dex. The abundances of carbon, nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigate line-profile variability in HD54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. The photospheric lines remain constant in shape between 2009 and 2014, although H alpha shows a variable emission. The H alpha emission is too strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normal chemical composition and the absence of photospheric line profile variations make HD54879 the most strongly magnetic, non-variable single O-star detected to date.}, language = {en} } @article{OskinovaNazeTodtetal.2014, author = {Oskinova, Lida and Naze, Yael and Todt, Helge Tobias and Huenemoerder, David P. and Ignace, Richard and Hubrig, Swetlana and Hamann, Wolf-Rainer}, title = {Discovery of X-ray pulsations from a massive star}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5024}, pages = {9}, year = {2014}, abstract = {X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star xi(1) CMa. This star is a variable of beta Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.}, language = {en} } @article{HubrigOskinovaSchoeller2011, author = {Hubrig, Swetlana and Oskinova, Lida and Schoeller, M.}, title = {First detection of a magnetic field in the fast rotating runaway Oe star zeta Ophiuchi}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {332}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0004-6337}, doi = {10.1002/asna.201111516}, pages = {147 -- 152}, year = {2011}, abstract = {The star zeta Ophiuchi is one of the brightest massive stars in the northern hemisphere and was intensively studied in various wavelength domains. The currently available observational material suggests that certain observed phenomena are related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Oph with FORS 1 mounted on the 8-m Kueyen telescope of the VLT to investigate if a magnetic field is indeed present in this star. Using all available absorption lines, we detect a mean longitudinal magnetic field < B(z)>(all) = 141 +/- 45 G, confirming the magnetic nature of this star. We review the X-ray properties of zeta Oph with the aim to understand whether the X-ray emission of zeta Oph is dominated by magnetic or by wind instability processes.}, language = {en} } @article{SchoellerHubrigIlyinetal.2011, author = {Schoeller, M. and Hubrig, Swetlana and Ilyin, Ilya and Kharchenko, N. V. and Briquet, Maryline and Gonzalez, J. F. and Langer, Norbert and Oskinova, Lida}, title = {Magnetic field studies of massive main sequence stars}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {332}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {9-10}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {MAGORI Collaboration}, issn = {0004-6337}, doi = {10.1002/asna.201111606}, pages = {994 -- 997}, year = {2011}, abstract = {We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and a dozen O stars. Since the effects of those magnetic fields have been found to be substantial by recent models, we are looking into their impact on stellar rotation, pulsation, stellar winds, and chemical abundances. Accurate studies of the age, environment, and kinematic characteristics of the magnetic stars are also promising to give us new insight into the origin of the magnetic fields. Furthermore, longer time series of magnetic field measurements allow us to observe the temporal variability of the magnetic field and to deduce the stellar rotation period and the magnetic field geometry. Studies of the magnetic field in massive stars are indispensable to understand the conditions controlling the presence of those fields and their implications on the stellar physical parameters and evolution.}, language = {en} } @article{FossatiCastroMoreletal.2015, author = {Fossati, Luca and Castro, Norberto and Morel, Thierry and Langer, Norbert and Briquet, Maryline and Carroll, Thorsten Anthony and Hubrig, Swetlana and Nieva, Maria-Fernanda and Oskinova, Lida and Przybilla, Norbert and Schneider, Fabian R. N. and Schoeller, Magnus and Simon D{\´i}az, Sergio and Ilyin, Ilya and de Koter, Alex and Reisenegger, Andreas and Sana, Hugues}, title = {B fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars beta CMa and epsilon CMa Possible lack of a "magnetic desert" in massive stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {574}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424986}, pages = {15}, year = {2015}, abstract = {Only a small fraction of massive stars seem to host a measurable structured magnetic field, whose origin is still unknown and whose implications for stellar evolution still need to be assessed. Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD 44743; B1 II/III) and epsilon CMa (HD 52089; B1.5II) in December 2013 and April 2014. For both stars, we consistently detected the signature of a weak (<30 G in absolute value) longitudinal magnetic field, approximately constant with time. We determined the physical parameters of both stars and characterise their X-ray spectrum. For the beta Cep star beta CMa, our mode identification analysis led to determining a rotation period of 13.6 +/- 1.2 days and of an inclination angle of the rotation axis of 57.6 +/- 1.7 degrees, with respect to the line of sight. On the basis of these measurements and assuming a dipolar field geometry, we derived a best fitting obliquity of about 22 degrees and a dipolar magnetic field strength (B-d) of about 100 G (60 < B-d < 230 G within the 1 sigma level), below what is typically found for other magnetic massive stars. This conclusion is strengthened further by considerations of the star's X-ray spectrum. For epsilon CMa we could only determine a lower limit on the dipolar magnetic field strength of 13 G. For this star, we determine that the rotation period ranges between 1.3 and 24 days. Our results imply that both stars are expected to have a dynamical magnetosphere, so the magnetic field is not able to support a circumstellar disk. We also conclude that both stars are most likely core hydrogen burning and that they have spent more than 2/3 of their main sequence lifetime. A histogram of the distribution of the dipolar magnetic field strength for the magnetic massive stars known to date does not show the magnetic field "desert" observed instead for intermediate-mass stars. The biases involved in the detection of (weak) magnetic fields in massive stars with the currently available instrumentation and techniques imply that weak fields might be more common than currently observed. Our results show that, if present, even relatively weak magnetic fields are detectable in massive stars and that more observational effort is probably still needed to properly access the magnetic field incidence.}, language = {en} } @article{HubrigSchoellerFossatietal.2015, author = {Hubrig, Swetlana and Schoeller, Markus and Fossati, Luca and Morel, Thierry and Castro, Neves and Oskinova, Lida and Przybilla, Norbert and Eikenberry, Stephen S. and Nieva, Maria Fernanda and Langer, Norbert}, title = {B fields in OB stars (BOB): FORS2 spectropolarimetric follow-up of the two rare rigidly rotating magnetosphere stars HD 23478 and HD 345439}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {578}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201526262}, pages = {5}, year = {2015}, abstract = {Aims. Massive B-type stars with strong magnetic fields and fast rotation are very rare and pose a mystery for theories of star formation and magnetic field evolution. Only two such stars, called sigma Ori E analogues, were known until recently. A team involved in APOGEE, one of the Sloan Digital Sky Survey III programs, announced the discovery of two additional rigidly rotating magnetosphere stars, HD 23478 and HD 345439. The magnetic fields in these newly discovered sOri E analogues have not been investigated so far. Methods. In the framework of our ESO Large Programme and one normal ESO programme, we carried out low-resolution FORS 2 spectropolarimetric observations of HD 23478 and HD 345439. Results. In the measurements of hydrogen lines, we discover a rather strong longitudinal magnetic field of up to 1.5 kG in HD 23478 and up to 1.3 kG using the entire spectrum. The analysis of HD 345439 using four subsequent spectropolarimetric subexposures does not reveal a magnetic field at a significance level of 3 sigma. On the other hand, individual subexposures indicate that HD 345439 may host a strong magnetic field that rapidly varies over 88 min. The fast rotation of HD 345439 is also indicated by the behaviour of several metallic and He I lines in the low-resolution FORS 2 spectra that show profile variations already on this short time-scale.}, language = {en} } @article{OskinovaTodtHuenemoerderetal.2015, author = {Oskinova, Lida and Todt, Helge Tobias and Huenemoerder, David P. and Hubrig, Swetlana and Ignace, Richard and Hamann, Wolf-Rainer and Balona, Luis}, title = {On X-ray pulsations in beta Cephei-type variables}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {577}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201525908}, pages = {5}, year = {2015}, abstract = {Context. beta Cep-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one beta Cep-variable also shows periodic variability in X-rays. Aims. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. Methods. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. Results. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question.}, language = {en} } @article{HubrigFossatiCarrolletal.2014, author = {Hubrig, Swetlana and Fossati, Luca and Carroll, Thorsten Anthony and Castro, Norberto and Gonzalez, J. F. and Ilyin, Ilya and Przybilla, Norbert and Schoeller, M. and Oskinova, Lida and Morel, T. and Langer, N. and Scholz, Ralf-Dieter and Kharchenko, N. V. and Nieva, M. -F.}, title = {B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {564}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201423490}, pages = {5}, year = {2014}, abstract = {Aims. Recent magnetic field surveys in O- and B-type stars revealed that about 10\% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods. In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results. Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars.}, language = {en} } @article{HubrigScholzHamannetal.2016, author = {Hubrig, Swetlana and Scholz, Kathleen and Hamann, Wolf-Rainer and Schoeller, M. and Ignace, R. and Ilyin, Ilya and Gayley, K. G. and Oskinova, Lida}, title = {Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {458}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw558}, pages = {3381 -- 3393}, year = {2016}, abstract = {To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.}, language = {en} } @article{PrzybillaFossatiHubrigetal.2016, author = {Przybilla, Norbert and Fossati, Luca and Hubrig, Swetlana and Nieva, M. -F. and Jaervinen, S. P. and Castro, Norberto and Schoeller, M. and Ilyin, Ilya and Butler, Keith and Schneider, F. R. N. and Oskinova, Lida and Morel, T. and Langer, N. and de Koter, A.}, title = {B fields in OB stars (BOB): Detection of a magnetic field in the He-strong star CPD-57 degrees 3509}, series = {Organic letters}, volume = {587}, journal = {Organic letters}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboratio}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527646}, pages = {15}, year = {2016}, abstract = {Methods. Spectropolarimetric observations with FORS2 and HARPSpol are analysed using two independent approaches to quantify the magnetic field strength. A high-S/N FLAMES/GIRAFFE spectrum is analysed using a hybrid non-LTE model atmosphere technique. Comparison with stellar evolution models constrains the fundamental parameters of the star. Results. We obtain a firm detection of a surface averaged longitudinal magnetic field with a maximum amplitude of about 1 kG. Assuming a dipolar configuration of the magnetic field, this implies a dipolar field strength larger than 3.3 kG. Moreover, the large amplitude and fast variation (within about 1 day) of the longitudinal magnetic field implies that CPD-57 degrees 3509 is spinning very fast despite its apparently slow projected rotational velocity. The star should be able to support a centrifugal magnetosphere, yet the spectrum shows no sign of magnetically confined material; in particular, emission in H alpha is not observed. Apparently, the wind is either not strong enough for enough material to accumulate in the magnetosphere to become observable or, alternatively, some leakage process leads to loss of material from the magnetosphere. The quantitative spectroscopic analysis of the star yields an effective temperature and a logarithmic surface gravity of 23 750 +/- 250 K and 4.05 +/- 0.10, respectively, and a surface helium fraction of 0.28 +/- 0.02 by number. The surface abundances of C, N, O, Ne, S, and Ar are compatible with the cosmic abundance standard, whereas Mg, Al, Si, and Fe are depleted by about a factor of 2. This abundance pattern can be understood as the consequence of a fractionated stellar wind. CPD-57 degrees 3509 is one of the most evolved He-strong stars known with an independent age constraint due to its cluster membership.}, language = {en} } @article{HubrigSchoellerKholtyginetal.2015, author = {Hubrig, Swetlana and Sch{\"o}ller, Markus and Kholtygin, Alexander F. and Tsumura, Hiroki and Hoshino, Akio and Kitamoto, Shunji and Oskinova, Lida and Ignace, Richard and Todt, Helge Tobias and Ilyin, Ilya}, title = {New multiwavelength observations of the Of?p star CPD-28 degrees 2561}, series = {Monthly notices of the Royal Astronomical Society}, volume = {447}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu2516}, pages = {1885 -- 1894}, year = {2015}, abstract = {A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD -28 degrees 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole B-d is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD -28 degrees 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log L-X/L-bol approximate to -5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD -28 degrees 2561 with the presence of a kG strong magnetic field capable to confine stellar wind.}, language = {en} } @article{ShenarOskinovaJaervinenetal.2017, author = {Shenar, Tomer and Oskinova, Lida and Jaervinen, S. P. and Luckas, P. and Hainich, Rainer and Todt, Helge Tobias and Hubrig, Swetlana and Sander, Andreas Alexander Christoph and Ilyin, Ilya and Hamann, Wolf-Rainer}, title = {Constraining the weak-wind problem}, series = {Contributions Of The Astronomical Observatory Skalnate Pleso}, volume = {48}, journal = {Contributions Of The Astronomical Observatory Skalnate Pleso}, number = {1}, publisher = {Astronomick{\´y} {\´U}stav SAV}, address = {Tatransk{\´a} Lomnica}, issn = {1335-1842}, doi = {10.1051/0004-6361/201731291}, pages = {139 -- 143}, year = {2017}, abstract = {Mass-loss rates of massive, late type main sequence stars are much weaker than currently predicted, but their true values are very difficult to measure. We suggest that confined stellar winds of magnetic stars can be exploited to constrain the true mass-loss rates M of massive main sequence stars. We acquired UV, X-ray, and optical amateur data of HD 54879 (09.7 V), one of a few O-type stars with a detected atmospheric magnetic field (B-d greater than or similar to 2 kG). We analyze these data with the Potsdam Wolf-Rayet (PoWR) and XSPEC codes. We can roughly estimate the mass-loss rate the star would have in the absence of a magnetic field as log M-B=0 approximate to -9.0 M-circle dot yr(-1). Since the wind is partially trapped within the Alfven radius rA greater than or similar to 12 R-*,, the true mass-loss rate of HD 54879 is log M less than or similar to -10.2 M-circle dot yr(-1). Moreover, we find that the microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (< 4 km s(-1)). An initial mass of 16 M-circle dot and an age of 5 Myr are inferred. We derive a mean X-ray emitting temperature of log T-x = 6.7 K and an X-ray luminosity of log L-x = 32 erg s(-1). The latter implies a significant X-ray excess (log L-x/L-Bol approximate to - 6.0), most likely stemming from collisions at the magnetic equator. A tentative period of P approximate to 5 yr is derived from variability of the Ha line. Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars.}, language = {en} } @article{SchoellerHubrigFossatietal.2017, author = {Sch{\"o}ller, Markus and Hubrig, Swetlana and Fossati, L. and Carroll, Thorsten Anthony and Briquet, Maryline and Oskinova, Lida and J{\"a}rvinen, S. and Ilyin, Ilya and Castro, N. and Morel, T. and Langer, N. and Przybilla, N. and Nieva, M. -F. and Kholtygin, A. F. and Sana, H. and Herrero, A. and Barba, R. H. and de Koter, A.}, title = {B fields in OB stars (BOB)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {599}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628905}, pages = {11}, year = {2017}, abstract = {Aims. The B fields in OB stars (BOB) Collaboration is based on an ESO Large Programme to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. Methods. In the framework of this program, we carried out low-resolution spectropolarimetric observations of a large sample of massive stars using FORS2 installed at the ESO VLT 8m telescope. Results. We determined the magnetic field values with two completely independent reduction and analysis pipelines. Our in-depth study of the magnetic field measurements shows that differences between our two pipelines are usually well within 3 sigma errors. From the 32 observations of 28 OB stars, we were able to monitor the magnetic fields in CPD -57 degrees 3509 and HD164492C, confirm the magnetic field in HD54879, and detect a magnetic field in CPD -62 degrees 2124. We obtain a magnetic field detection rate of 6 +/- 3\% for the full sample of 69 OB stars observed with FORS 2 within the BOB program. For the preselected objects with a nu sin i below 60 km s(-1), we obtain a magnetic field detection rate of 5 +/- 5\%. We also discuss X-ray properties and multiplicity of the objects in our FORS2 sample with respect to the magnetic field detections.}, language = {en} } @article{HubrigKholtyginIlyinetal.2016, author = {Hubrig, Swetlana and Kholtygin, A. and Ilyin, Ilya and Sch{\"o}ller, M. and Oskinova, Lida}, title = {THE FIRST SPECTROPOLARIMETRIC MONITORING OF THE PECULIAR O4 Ief SUPERGIANT zeta PUPPIS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {822}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/822/2/104}, pages = {7}, year = {2016}, abstract = {The origin of the magnetic field in massive O-type stars is still under debate. To model the physical processes responsible for the generation of O star magnetic fields, it is important to understand whether correlations between the presence of a magnetic field and stellar evolutionary state, rotation velocity, kinematical status, and surface composition can be identified. The O4 Ief supergiant zeta Pup is a fast rotator and a runaway star, which may be a product of a past binary interaction, possibly having had an encounter with the cluster Trumper 10 some 2 Myr ago. The currently available observational material suggests that certain observed phenomena in this star may be related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Pup with FORS 2 mounted on the 8 m Antu telescope of the Very Large Telescope to investigate if a magnetic field is indeed present in this star. We show that many spectral lines are highly variable and probably vary with the recently detected period of 1.78 day. No magnetic field is detected in zeta Pup, as no magnetic field measurement has a significance level higher than 2.4 sigma. Still, we studied the probability of a single sinusoidal explaining the variation of the longitudinal magnetic field measurements.}, language = {en} } @misc{MorelCastroFossatietal.2014, author = {Morel, T. and Castro, Norberto and Fossati, Luca and Hubrig, Swetlana and Langer, N. and Przybilla, Norbert and Sch{\"o}ller, Markus and Carroll, Thorsten Anthony and Ilyin, Ilya and Irrgang, Andreas and Oskinova, Lida and Schneider, Fabian R. N. and Simon D{\´i}az, Sergio and Briquet, Maryline and Gonz{\´a}lez, Jean-Francois and Kharchenko, Nina and Nieva, M.-F. and Scholz, Ralf-Dieter and de Koter, Alexander and Hamann, Wolf-Rainer and Herrero, Artemio and Ma{\´i}z Apell{\´a}niz, Jesus and Sana, Hugues and Arlt, Rainer and Barb{\´a}, Rodolfo H. and Dufton, Polly and Kholtygin, Alexander and Mathys, Gautier and Piskunov, Anatoly E. and Reisenegger, Andreas and Spruit, H. and Yoon, S.-C.}, title = {The B fields in OB stars (BOB) survey}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {821}, issn = {1866-8372}, doi = {10.25932/publishup-41523}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415238}, pages = {8}, year = {2014}, abstract = {The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects.}, language = {en} }