@article{SpillingSchulzPauletal.2016, author = {Spilling, Kristian and Schulz, Kai G. and Paul, Allanah J. and Boxhammer, Tim and Achterberg, Eric Pieter and Hornick, Thomas and Lischka, Silke and Stuhr, Annegret and Bermudez, Rafael and Czerny, Jan and Crawfurd, Kate and Brussaard, Corina P. D. and Grossart, Hans-Peter and Riebesell, Ulf}, title = {Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment}, series = {Biogeosciences}, volume = {13}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-13-6081-2016}, pages = {6081 -- 6093}, year = {2016}, abstract = {About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7\% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95\% was respired, similar to 1\% ended up in the TPC (including export), and 5-25\% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100\% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95\% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30\% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.}, language = {en} } @article{NauschBachCzernyetal.2016, author = {Nausch, Monika and Bach, Lennart Thomas and Czerny, Jan and Goldstein, Josephine and Großart, Hans-Peter and Hellemann, Dana and Hornick, Thomas and Achterberg, Eric Pieter and Schulz, Kai-Georg and Riebesell, Ulf}, title = {Effects of CO2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea}, series = {Biogeosciences}, volume = {13}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-13-3035-2016}, pages = {3035 -- 3050}, year = {2016}, abstract = {Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjarden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjarden, dissolved organic phosphorus (DOP) concentrations of 0.26aEuro-+/- aEuro-0.03 and 0.23aEuro-+/- aEuro-0.04aEuro-A mu molaEuro-L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15aEuro-A +/- aEuro-0.02 in the mesocosms and 0.17aEuro-A +/- aEuro-0.07aEuro-A mu molaEuro-L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82aEuro-\% of PO4 was converted into DOP whereby only 18aEuro-\% of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9aEuro-nmolaEuro-L(-1)aEuro-h(-1). About 86aEuro-\% of them was realized by the size fraction < aEuro-3aEuro-A mu m. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27aEuro-\% of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. However, significant short-term effects were observed for PO4 and PP pool sizes in CO2 treatments > aEuro-1000aEuro-A mu atm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO(2) conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation. It can be deduced from the results, that visible effects of CO2 on P pools are coupled to phytoplankton growth when the transformation of PO4 into POP was stimulated. The transformation of PO4 into DOP on the other hand does not seem to be affected. Additionally, there were some indications that cellular mechanisms of P regulation might be modified under CO2 elevation changing the relationship between cellular constituents.}, language = {en} } @misc{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric Pieter and Woodhouse, Jason Nicholas and Schulz, Kai Georg and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {667}, issn = {1866-8372}, doi = {10.25932/publishup-41712}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417126}, pages = {15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @misc{NauschBachCzernyetal.2016, author = {Nausch, Monika and Bach, Lennart Thomas and Czerny, Jan and Goldstein, Josephine and Grossart, Hans-Peter and Hellemann, Dana and Hornick, Thomas and Achterberg, Eric Pieter and Schulz, Kai Georg and Riebesell, Ulf}, title = {Effects of CO 2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea}, series = {Biogeosciences}, journal = {Biogeosciences}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410274}, pages = {16}, year = {2016}, abstract = {Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjarden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjarden, dissolved organic phosphorus (DOP) concentrations of 0.26aEuro-+/- aEuro-0.03 and 0.23aEuro-+/- aEuro-0.04aEuro-A mu molaEuro-L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15aEuro-A +/- aEuro-0.02 in the mesocosms and 0.17aEuro-A +/- aEuro-0.07aEuro-A mu molaEuro-L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82aEuro-\% of PO4 was converted into DOP whereby only 18aEuro-\% of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9aEuro-nmolaEuro-L(-1)aEuro-h(-1). About 86aEuro-\% of them was realized by the size fraction < aEuro-3aEuro-A mu m. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27aEuro-\% of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. However, significant short-term effects were observed for PO4 and PP pool sizes in CO2 treatments > aEuro-1000aEuro-A mu atm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO(2) conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation. It can be deduced from the results, that visible effects of CO2 on P pools are coupled to phytoplankton growth when the transformation of PO4 into POP was stimulated. The transformation of PO4 into DOP on the other hand does not seem to be affected. Additionally, there were some indications that cellular mechanisms of P regulation might be modified under CO2 elevation changing the relationship between cellular constituents.}, language = {en} } @misc{SpillingSchulzPauletal.2016, author = {Spilling, Kristian and Schulz, Kai Georg and Paul, Allanah J. and Boxhammer, Tim and Achterberg, Eric Pieter and Hornick, Thomas and Lischka, Silke and Stuhr, Annegret and Berm{\´u}dez, Rafael and Czerny, Jan and Crawfurd, Kate and Brussaard, Corina P. D. and Grossart, Hans-Peter and Riebesell, Ulf}, title = {Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {544}, issn = {1866-8372}, doi = {10.25932/publishup-41183}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411835}, pages = {13}, year = {2016}, abstract = {About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7\% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95\% was respired, similar to 1\% ended up in the TPC (including export), and 5-25\% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100\% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95\% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30\% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.}, language = {en} } @phdthesis{Hornick2019, author = {Hornick, Thomas}, title = {Impact of climate change effects on diversity and function of pelagic heterotrophic bacteria studied in large-scale mesocosm facilities}, doi = {10.25932/publishup-42893}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428936}, school = {Universit{\"a}t Potsdam}, pages = {199}, year = {2019}, abstract = {Seit der Industriellen Revolution steigt die Konzentration von Kohlenstoffdioxid (CO2) und anderen Treibhausgasen in der Erdatmosph{\"a}re stetig an, wodurch wesentliche Prozesse im Erdsystem beeinflusst werden. Dies wird mit dem Begriff „Klimawandel" umschrieben. Aquatische {\"O}kosysteme sind sehr stark davon betroffen, da sie als Integral vieler Prozesse in einer Landschaft fungieren. Ziel dieser Doktorarbeit war zu bestimmen, wie verschiedene Auswirkungen des Klimawandels die Gemeinschaftsstruktur und Aktivit{\"a}t von heterotrophen Bakterien in Gew{\"a}ssern ver{\"a}ndert, welche eine zentrale Rolle bei biogeochemischen Prozessen einnehmen. Diese Arbeit konzentriert sich auf zwei Aspekte des Klimawandels: (1) Ozeane nehmen einen Großteil des atmosph{\"a}rischen CO2 auf, welches im Meerwasser das chemische Gleichgewicht des Karbonatsystems verschiebt („Ozeanversauerung"). (2) Durch kontinuierlichen Anstieg der Erdoberfl{\"a}chentemperatur werden Ver{\"a}nderungen im Klimasystem der Erde vorhergesagt, welche u. a. die H{\"a}ufigkeit und Heftigkeit von episodischen Wetterereignissen (z.B. St{\"u}rme) verst{\"a}rken wird. Insbesondere Sommer-St{\"u}rme sind dabei in der Lage die sommerliche Temperaturschichtung der Wassers{\"a}ule in Seen zu zerst{\"o}ren. Beide Effekte des Klimawandels k{\"o}nnen weitreichende Auswirkungen auf Wasserchemie/-physik sowie die Verteilung von Organismen haben, was mittels Mesokosmen simuliert wurde. Dabei untersuchten wir den Einfluss der Ozeanversauerung auf heterotrophe bakterielle Prozesse in der Ostsee bei geringen Konzentrationen an gel{\"o}sten N{\"a}hrstoffen. Unsere Ergebnisse zeigen, dass Ozeanversauerungseffekte in Kombination mit N{\"a}hrstofflimitation indirekt das Wachstum von heterotrophen Bakterien durch ver{\"a}nderte trophische Interaktionen beeinflussen k{\"o}nnen und potentiell zu einer Erh{\"o}hung der Autotrophie des {\"O}kosystems f{\"u}hren. In einer weiteren Studie analysierten wir, wie Ozeanversauerung die Umsetzung und Qualit{\"a}t gel{\"o}sten organischen Materials (DOM) durch heterotrophe Bakterien beeinflussen kann. Die Ergebnisse weisen jedoch darauf hin, dass {\"A}nderungen in der DOM-Qualit{\"a}t durch heterotrophe bakterielle Prozesse mit zunehmender Ozeanversauerung unwahrscheinlich sind. Desweiteren wurde der Einfluss eines starken Sommer-Sturmes auf den stratifizierten, oligotroph-mesotrophen Stechlinsee simuliert. Mittels oberfl{\"a}chlicher Durchmischung in Mesokosmen wurde die bestehende Thermokline zerst{\"o}rt und die durchmischte Oberfl{\"a}chenwasserschicht vergr{\"o}ßert. Dies {\"a}nderte die physikalischen und chemischen Gradienten innerhalb der Wassers{\"a}ule. Effekte der Einmischung von Tiefenwasser {\"a}nderten in der Folge die Zusammensetzung der bakteriellen Gemeinschaftsstruktur und stimulierten das Wachstum filament{\"o}ser Cyanobakterien, die zu einer Cyanobakterien-Bl{\"u}te f{\"u}hrte und so maßgeblich die metabolischen Prozesse von heterotrophen Bakterien bestimmte. Unsere Studie gibt ein mechanistisches Verst{\"a}ndnis, wie Sommer-St{\"u}rme bakterielle Gemeinschaften und Prozesse f{\"u}r l{\"a}ngere Zeit w{\"a}hrend der sommerlichen Stratifizierung beeinflussen k{\"o}nnen. Die in dieser Arbeit pr{\"a}sentierten Ergebnisse zeigen Ver{\"a}nderungen bakterieller Gemeinschaften und Prozesse, welche mit dem einhergehenden Klimawandel erwartet werden k{\"o}nnen. Diese sollten bei Beurteilung klimarelevanter Fragen hinsichtlich eines zuk{\"u}nftigen Gew{\"a}sser-managements Ber{\"u}cksichtigung finden.}, language = {en} } @article{AttermeyerPremkeHornicketal.2013, author = {Attermeyer, Katrin and Premke, Katrin and Hornick, Thomas and Hilt, Sabine and Grossart, Hans-Peter}, title = {Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats}, series = {Ecology : a publication of the Ecological Society of America}, volume = {94}, journal = {Ecology : a publication of the Ecological Society of America}, number = {12}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/13-0420.1}, pages = {2754 -- 2766}, year = {2013}, abstract = {In aquatic systems, terrestrial dissolved organic matter (t-DOM) is known to stimulate bacterial activities in the water column, but simultaneous effects of autumnal leaf input on water column and sediment microbial dynamics in littoral zones of lakes remain largely unknown. The study's objective was to determine the effects of leaf litter on bacterial metabolism in the littoral water and sediment, and subsequently, the consequences for carbon cycling and food web dynamics. Therefore, in late fall, we simultaneously measured water and sediment bacterial metabolism in the littoral zone of a temperate shallow lake after adding terrestrial particulate organic matter (t-POM), namely, maize leaves. To better evaluate bacterial production (BP) and community respiration (CR) in sediments, we incubated sediment cores with maize leaves of different quality (nonleached and leached) under controlled laboratory conditions. Additionally, to quantify the incorporated leaf carbon into microbial biomass, we determined carbon isotopic ratios of fatty acids from sediment and leaf-associated microbes from a laboratory experiment using C-13-enriched beech leaves. The concentrations of dissolved organic carbon (DOC) increased significantly in the lake after the addition of maize leaves, accompanied by a significant increase in water BP. In contrast, sediment BP declined after an initial peak, showing no positive response to t-POM addition. Sediment BP and CR were also not stimulated by t-POM in the laboratory experiment, either in short-term or in long-term incubations, except for a short increase in CR after 18 hours. However, this increase might have reflected the metabolism of leaf-associated microorganisms. We conclude that the leached t-DOM is actively incorporated into microbial biomass in the water column but that the settling leached t-POM (t-POML) does not enter the food web via sediment bacteria. Consequently, t-POML is either buried in the sediment or introduced into the aquatic food web via microorganisms (bacteria and fungi) directly associated with t-POML and via benthic macroinvertebrates by shredding of t-POML. The latter pathway represents a benthic shortcut which efficiently transfers t-POML to higher trophic levels.}, language = {en} } @article{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric P. and Woodhouse, Jason Nicholas and Schulz, Kai G. and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1-2017}, pages = {1 -- 15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @article{KolmakovaGladyshevFonvielleetal.2019, author = {Kolmakova, Olesya V. and Gladyshev, Michail I. and Fonvielle, Jeremy Andre and Ganzert, Lars and Hornick, Thomas and Grossart, Hans-Peter}, title = {Effects of zooplankton carcasses degradation on freshwater bacterial community composition and implications for carbon cycling}, series = {Environmental microbiology}, volume = {21}, journal = {Environmental microbiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.14418}, pages = {34 -- 49}, year = {2019}, abstract = {Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh C-13-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter.}, language = {en} }