@article{SemmoHildebrandtTrappetal.2012, author = {Semmo, Amir and Hildebrandt, Dieter and Trapp, Matthias and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Concepts for cartography-oriented visualization of virtual 3D city models}, series = {Photogrammetrie, Fernerkundung, Geoinformation}, journal = {Photogrammetrie, Fernerkundung, Geoinformation}, number = {4}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {1432-8364}, doi = {10.1127/1432-8364/2012/0131}, pages = {455 -- 465}, year = {2012}, abstract = {Virtual 3D city models serve as an effective medium with manifold applications in geoinformation systems and services. To date, most 3D city models are visualized using photorealistic graphics. But an effective communication of geoinformation significantly depends on how important information is designed and cognitively processed in the given application context. One possibility to visually emphasize important information is based on non-photorealistic rendering, which comprehends artistic depiction styles and is characterized by its expressiveness and communication aspects. However, a direct application of non-photorealistic rendering techniques primarily results in monotonic visualization that lacks cartographic design aspects. In this work, we present concepts for cartography-oriented visualization of virtual 3D city models. These are based on coupling non-photorealistic rendering techniques and semantics-based information for a user, context, and media-dependent representation of thematic information. This work highlights challenges for cartography-oriented visualization of 3D geovirtual environments, presents stylization techniques and discusses their applications and ideas for a standardized visualization. In particular, the presented concepts enable a real-time and dynamic visualization of thematic geoinformation.}, language = {en} } @article{Hildebrandt2010, author = {Hildebrandt, Dieter}, title = {Towards service-oriented, standards-based, image-based provisioning, interaction with and styling of geovirtual 3D environments}, isbn = {978-3-86956-036-6}, year = {2010}, language = {en} } @article{HildebrandtTimm2014, author = {Hildebrandt, Dieter and Timm, Robert}, title = {An assisting, constrained 3D navigation technique for multiscale virtual 3D city models}, series = {Geoinformatica : an international journal on advances of computer science for geographic information systems}, volume = {18}, journal = {Geoinformatica : an international journal on advances of computer science for geographic information systems}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1384-6175}, doi = {10.1007/s10707-013-0189-8}, pages = {537 -- 567}, year = {2014}, abstract = {Virtual 3D city models serve as integration platforms for complex geospatial and georeferenced information and as medium for effective communication of spatial information. In order to explore these information spaces, navigation techniques for controlling the virtual camera are required to facilitate wayfinding and movement. However, navigation is not a trivial task and many available navigation techniques do not support users effectively and efficiently with their respective skills and tasks. In this article, we present an assisting, constrained navigation technique for multiscale virtual 3D city models that is based on three basic principles: users point to navigate, users are lead by suggestions, and the exploitation of semantic, multiscale, hierarchical structurings of city models. The technique particularly supports users with low navigation and virtual camera control skills but is also valuable for experienced users. It supports exploration, search, inspection, and presentation tasks, is easy to learn and use, supports orientation, is efficient, and yields effective view properties. In particular, the technique is suitable for interactive kiosks and mobile devices with a touch display and low computing resources and for use in mobile situations where users only have restricted resources for operating the application. We demonstrate the validity of the proposed navigation technique by presenting an implementation and evaluation results. The implementation is based on service-oriented architectures, standards, and image-based representations and allows exploring massive virtual 3D city models particularly on mobile devices with limited computing resources. Results of a user study comparing the proposed navigation technique with standard techniques suggest that the proposed technique provides the targeted properties, and that it is more advantageous to novice than to expert users.}, language = {en} } @article{Hildebrandt2014, author = {Hildebrandt, Dieter}, title = {A software reference architecture for service-oriented 3D geovisualization systems}, series = {ISPRS International Journal of Geo-Information}, volume = {3}, journal = {ISPRS International Journal of Geo-Information}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2220-9964}, doi = {10.3390/ijgi3041445}, pages = {1445 -- 1490}, year = {2014}, language = {en} } @article{Hildebrandt2016, author = {Hildebrandt, Dieter}, title = {Image-based styling}, series = {The Visual Computer}, volume = {32}, journal = {The Visual Computer}, publisher = {Springer}, address = {New York}, issn = {0178-2789}, doi = {10.1007/s00371-015-1073-3}, pages = {445 -- 463}, year = {2016}, abstract = {The same data can be visualized using various visual styles that each is suitable for specific requirements, e.g., 3D geodata visualized using photorealistic, cartographic, or illustrative styles. In contrast to feature-based styling, image-based styling performed in image space at image resolution allows decoupling styling from image generation and output-sensitive, expressive styling. However, leveraging image-based styling is still impeded. No previous approach allows specifying image-based styling expressively with an extensive inventory of composable operators, while providing styling functionality in a service-oriented, interoperable manner. In this article, we present an interactive system for specifying and providing the functionality of image-based styling. As key characteristics, it separates concerns of styling from image generation and facilitates specifying styling as algebraic compositions of high-level operators using a unified 3D model representation. We propose a generalized visualization model, an image-based styling algebra, two declarative DSLs, an operator taxonomy, an operational model, and a standards-based service interface. The approach facilitates expressive specifications of image-based styling for design, description, and analysis and leveraging the functionality of image-based styling in a service-oriented, interoperable, reusable, and composable manner.}, language = {en} } @misc{Hildebrandt2014, author = {Hildebrandt, Dieter}, title = {A software reference architecture for service-oriented 3D geovisualization systems}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1131}, issn = {1866-8372}, doi = {10.25932/publishup-47583}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475831}, pages = {48}, year = {2014}, abstract = {Modern 3D geovisualization systems (3DGeoVSs) are complex and evolving systems that are required to be adaptable and leverage distributed resources, including massive geodata. This article focuses on 3DGeoVSs built based on the principles of service-oriented architectures, standards and image-based representations (SSI) to address practically relevant challenges and potentials. Such systems facilitate resource sharing and agile and efficient system construction and change in an interoperable manner, while exploiting images as efficient, decoupled and interoperable representations. The software architecture of a 3DGeoVS and its underlying visualization model have strong effects on the system's quality attributes and support various system life cycle activities. This article contributes a software reference architecture (SRA) for 3DGeoVSs based on SSI that can be used to design, describe and analyze concrete software architectures with the intended primary benefit of an increase in effectiveness and efficiency in such activities. The SRA integrates existing, proven technology and novel contributions in a unique manner. As the foundation for the SRA, we propose the generalized visualization pipeline model that generalizes and overcomes expressiveness limitations of the prevalent visualization pipeline model. To facilitate exploiting image-based representations (IReps), the SRA integrates approaches for the representation, provisioning and styling of and interaction with IReps. Five applications of the SRA provide proofs of concept for the general applicability and utility of the SRA. A qualitative evaluation indicates the overall suitability of the SRA, its applications and the general approach of building 3DGeoVSs based on SSI.}, language = {en} } @article{HildebrandtDoellner2010, author = {Hildebrandt, Dieter and D{\"o}llner, J{\"u}rgen}, title = {Service-oriented, standards-based 3D geovisualization : potential and challenges}, issn = {0198-9715}, doi = {10.1016/j.compenvurbsys.2010.05.003}, year = {2010}, abstract = {The application of the architectural concept of service-oriented architectures (SOA) in combination with open standards when building distributed, 3D geovisualization systems offers the potential to cover and take advantage of the opportunities and demands created by the rise of ubiquitous computer networks and the Internet as well as to overcome prevalent interoperability barriers. In this paper, based on a literature study and our own experiences, we discuss the potential and challenges that arise when building standards-based, distributed systems according to the SOA paradigm for 3D geovisualization, with a particular focus on 3D geovirtual environments and virtual 3D city models. First, we briefly introduce fundamentals of the SOA paradigm, identify requirements for service-oriented 3D geovisualization systems, and present an architectural framework that relates SOA concepts, geovisualization concepts, and standardization proposals by the Open Geospatial Consortium in a common frame of reference. Next, we discuss the potential and challenges driven by the SOA paradigm on four different levels of abstraction, namely service fundamentals, service composition, interaction services, performance, and overarching aspects, and we discuss those driven by standardization. We further exemplify and substantiate the discussion in the scope of a case study and the image-based provisioning of and interaction with visual representations of remote virtual 3D city models.}, language = {en} } @phdthesis{Hildebrandt2017, author = {Hildebrandt, Dieter}, title = {Service-oriented 3D geovisualization systems}, school = {Universit{\"a}t Potsdam}, pages = {xii, 268}, year = {2017}, abstract = {3D geovisualization systems (3DGeoVSs) that use 3D geovirtual environments as a conceptual and technical framework are increasingly used for various applications. They facilitate obtaining insights from ubiquitous geodata by exploiting human abilities that other methods cannot provide. 3DGeoVSs are often complex and evolving systems required to be adaptable and to leverage distributed resources. Designing a 3DGeoVS based on service-oriented architectures, standards, and image-based representations (SSI) facilitates resource sharing and the agile and efficient construction and change of interoperable systems. In particular, exploiting image-based representations (IReps) of 3D views on geodata supports taking full advantage of the potential of such system designs by providing an efficient, decoupled, interoperable, and increasingly applied representation. However, there is insufficient knowledge on how to build service-oriented, standards-based 3DGeoVSs that exploit IReps. This insufficiency is substantially due to technology and interoperability gaps between the geovisualization domain and further domains that such systems rely on. This work presents a coherent framework of contributions that support designing the software architectures of targeted systems and exploiting IReps for providing, styling, and interacting with geodata. The contributions uniquely integrate existing concepts from multiple domains and novel contributions for identified limitations. The proposed software reference architecture (SRA) for 3DGeoVSs based on SSI facilitates designing concrete software architectures of such systems. The SRA describes the decomposition of 3DGeoVSs into a network of services and integrates the following contributions to facilitate exploiting IReps effectively and efficiently. The proposed generalized visualization pipeline model generalizes the prevalent visualization pipeline model and overcomes its expressiveness limitations with respect to transforming IReps. The proposed approach for image-based provisioning enables generating and supplying service consumers with image-based views (IViews). IViews act as first-class data entities in the communication between services and provide a suitable IRep and encoding of geodata. The proposed approach for image-based styling separates concerns of styling from image generation and enables styling geodata uniformly represented as IViews specified as algebraic compositions of high-level styling operators. The proposed approach for interactive image-based novel view generation enables generating new IViews from existing IViews in response to interactive manipulations of the viewing camera and includes an architectural pattern that generalizes common novel view generation. The proposed interactive assisting, constrained 3D navigation technique demonstrates how a navigation technique can be built that supports users in navigating multiscale virtual 3D city models, operates in 3DGeoVSs based on SSI as an application of the SRA, can exploit IReps, and can support collaborating services in exploiting IReps. The validity of the contributions is supported by proof-of-concept prototype implementations and applications and effectiveness and efficiency studies including a user study. Results suggest that this work promises to support designing 3DGeoVSs based on SSI that are more effective and efficient and that can exploit IReps effectively and efficiently. This work presents a template software architecture and key building blocks for building novel IT solutions and applications for geodata, e.g., as components of spatial data infrastructures.}, language = {en} } @book{AlnemrPolyvyanyyAbuJarouretal.2010, author = {Alnemr, Rehab and Polyvyanyy, Artem and AbuJarour, Mohammed and Appeltauer, Malte and Hildebrandt, Dieter and Thomas, Ivonne and Overdick, Hagen and Sch{\"o}bel, Michael and Uflacker, Matthias and Kluth, Stephan and Menzel, Michael and Schmidt, Alexander and Hagedorn, Benjamin and Pascalau, Emilian and Perscheid, Michael and Vogel, Thomas and Hentschel, Uwe and Feinbube, Frank and Kowark, Thomas and Tr{\"u}mper, Jonas and Vogel, Tobias and Becker, Basil}, title = {Proceedings of the 4th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-036-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-40838}, publisher = {Universit{\"a}t Potsdam}, pages = {Getr. Z{\"a}hlung}, year = {2010}, language = {en} }