@article{ZinkWernerJechowetal.2014, author = {Zink, Christof and Werner, Nils and Jechow, Andreas and Heuer, Axel and Menzel, Ralf}, title = {Multi-wavelength operation of a single broad area diode laser by spectral beam combining}, series = {IEEE photonics technology letters}, volume = {26}, journal = {IEEE photonics technology letters}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1041-1135}, doi = {10.1109/LPT.2013.2291963}, pages = {253 -- 256}, year = {2014}, abstract = {Stabilized multi-wavelength emission from a single emitter broad area diode laser (BAL) is realized by utilizing an external cavity with a spectral beam combining architecture. Self-organized emitters that are equidistantly spaced across the slow axis are enforced by the spatially distributed wavelength selectivity of the external cavity. This resulted in an array like near-field emission although the BAL is physically a single emitter without any epitaxial sub-structuring and only one electrical contact. Each of the self-organized emitters is operated at a different wavelength and the emission is multiplexed into one spatial mode with near-diffraction limited beam quality. With this setup, multi-line emission of 31 individual spectral lines centered around and a total spectral width of 3.6 nm is realized with a 1000 mu m wide BAL just above threshold. To the best of our knowledge, this is the first demonstration of such a self-organization of emitters by optical feedback utilizing a spectral beam combining architecture.}, language = {en} }