@article{KrumbholzIshidaBaunachetal.2022, author = {Krumbholz, Julia and Ishida, Keishi and Baunach, Martin and Teikari, Jonna and Rose, Magdalena M. and Sasso, Severin and Hertweck, Christian and Dittmann, Elke}, title = {Deciphering chemical mediators regulating specialized metabolism in a symbiotic cyanobacterium}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker. International edition}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker. International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202204545}, pages = {10}, year = {2022}, abstract = {Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.}, language = {en} } @article{PancraceIshidaBriandetal.2018, author = {Pancrace, Claire and Ishida, Keishi and Briand, Enora and Pichi, Douglas Gatte and Weiz, Annika R. and Guljarmow, Arthur and Scalvenzi, Thibault and Sassoon, Nathalie and Hertweck, Christian and Dittmann, Elke and Gugger, Muriel}, title = {Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cytotoxic Aeruginoguanidines and Microguanidines}, series = {ACS chemical biology}, volume = {14}, journal = {ACS chemical biology}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.8b00918}, pages = {67 -- 75}, year = {2018}, abstract = {The cyanobacterial genus Microcystis is known to produce an elaborate array of structurally unique and biologically active natural products, including hazardous cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of peptides featuring a trisubstituted benzene unit and farnesylated arginine derivatives. In this study, we aimed at assigning these compounds to a biosynthetic gene cluster by utilizing biosynthetic attributes deduced from public genomes of Microcystis and the sporadic distribution of the metabolite in axenic strains of the Pasteur Culture Collection of Cyanobacteria. By integrating genome mining with untargeted metabolomics using liquid chromatography with mass spectrometry, we linked aeruginoguanidine (AGD) to a nonribosomal peptide synthetase gene cluster and coassigned a significantly smaller product to this pathway, microguanidine (MGD), previously only reported from two Microcystis blooms. Further, a new intermediate class of compounds named microguanidine amides was uncovered, thereby further enlarging this compound family. The comparison of structurally divergent AGDs and MGDs reveals an outstanding versatility of this biosynthetic pathway and provides insights into the assembly of the two compound subfamilies. Strikingly, aeruginoguanidines and microguanidines were found to be as widespread as the hepatotoxic microcystins, but the occurrence of both toxin families appeared to be mutually exclusive.}, language = {en} } @article{GattePicchiWeizIshidaetal.2014, author = {Gatte-Picchi, Douglas and Weiz, Annika and Ishida, Keishi and Hertweck, Christian and Dittmann-Th{\"u}nemann, Elke}, title = {Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family}, series = {Applied and environmental microbiology}, volume = {80}, journal = {Applied and environmental microbiology}, number = {4}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0099-2240}, doi = {10.1128/AEM.03502-13}, pages = {1380 -- 1387}, year = {2014}, abstract = {Microviridins represent a unique family of ribosomally synthesized cage-like depsipeptides from cyanobacteria with potent protease-inhibitory activities. The natural diversity of these peptides is largely unexplored. Here, we describe two methodologies that were developed to functionally characterize cryptic microviridin gene clusters from metagenomic DNA. Environmental samples were collected and enriched from cyanobacterial freshwater blooms of different geographical origins containing predominantly Microcystis sp. Microviridins were produced either directly from fosmid clones or after insertion of environmental DNA-derived gene cassettes into a minimal expression platform in Escherichia coli. Three novel microviridin variants were isolated and tested against different serine-type proteases. The comparison of the bioactivity profiles of the new congeners allows deduction of further structure-function relationships for microviridins. Moreover, this study provides new insights into microviridin processing and gene cluster organization.}, language = {en} } @article{WeizIshidaQuittereretal.2014, author = {Weiz, Annika R. and Ishida, Keishi and Quitterer, Felix and Meyer, Sabine and Kehr, Jan-Christoph and Mueller, Kristian M. and Groll, Michael and Hertweck, Christian and Dittmann-Th{\"u}nemann, Elke}, title = {Harnessing the evolvability of tricyclic microviridins to dissect protease-inhibitor interactions}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {53}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201309721}, pages = {3735 -- 3738}, year = {2014}, abstract = {Understanding and controlling proteolysis is an important goal in therapeutic chemistry. Among the natural products specifically inhibiting proteases microviridins are particularly noteworthy. Microviridins are ribosomally produced and posttranslationally modified peptides that are processed into a unique, cagelike architecture. Here, we report a combined rational and random mutagenesis approach that provides fundamental insights into selectivity-conferring moieties of microviridins. The potent variant microviridin J was co-crystallized with trypsin, and for the first time the three-dimensional structure of microviridins was determined and the mode of inhibition revealed.}, language = {en} } @misc{ArnisonBibbBierbaumetal.2013, author = {Arnison, Paul G. and Bibb, Mervyn J. and Bierbaum, Gabriele and Bowers, Albert A. and Bugni, Tim S. and Bulaj, Grzegorz and Camarero, Julio A. and Campopiano, Dominic J. and Challis, Gregory L. and Clardy, Jon and Cotter, Paul D. and Craik, David J. and Dawson, Michael and Dittmann-Th{\"u}nemann, Elke and Donadio, Stefano and Dorrestein, Pieter C. and Entian, Karl-Dieter and Fischbach, Michael A. and Garavelli, John S. and Goeransson, Ulf and Gruber, Christian W. and Haft, Daniel H. and Hemscheidt, Thomas K. and Hertweck, Christian and Hill, Colin and Horswill, Alexander R. and Jaspars, Marcel and Kelly, Wendy L. and Klinman, Judith P. and Kuipers, Oscar P. and Link, A. James and Liu, Wen and Marahiel, Mohamed A. and Mitchell, Douglas A. and Moll, Gert N. and Moore, Bradley S. and Mueller, Rolf and Nair, Satish K. and Nes, Ingolf F. and Norris, Gillian E. and Olivera, Baldomero M. and Onaka, Hiroyasu and Patchett, Mark L. and Piel, J{\"o}rn and Reaney, Martin J. T. and Rebuffat, Sylvie and Ross, R. Paul and Sahl, Hans-Georg and Schmidt, Eric W. and Selsted, Michael E. and Severinov, Konstantin and Shen, Ben and Sivonen, Kaarina and Smith, Leif and Stein, Torsten and Suessmuth, Roderich D. and Tagg, John R. and Tang, Gong-Li and Truman, Andrew W. and Vederas, John C. and Walsh, Christopher T. and Walton, Jonathan D. and Wenzel, Silke C. and Willey, Joanne M. and van der Donk, Wilfred A.}, title = {Ribosomally synthesized and post-translationally modified peptide natural products overview and recommendations for a universal nomenclature}, series = {Natural product reports : a journal of current developments in bio-organic chemistry}, volume = {30}, journal = {Natural product reports : a journal of current developments in bio-organic chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0265-0568}, doi = {10.1039/c2np20085f}, pages = {108 -- 160}, year = {2013}, abstract = {This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.}, language = {en} } @article{WeizIshidaMakoweretal.2011, author = {Weiz, Annika R. and Ishida, Keishi and Makower, Katharina and Ziemert, Nadine and Hertweck, Christian and Dittmann-Th{\"u}nemann, Elke}, title = {Leader Peptide and a Membrane Protein Scaffold Guide the Biosynthesis of the Tricyclic Peptide Microviridin}, series = {Chemistry \& biology}, volume = {18}, journal = {Chemistry \& biology}, number = {11}, publisher = {Cell Press}, address = {Cambridge}, issn = {1074-5521}, doi = {10.1016/j.chembiol.2011.09.011}, pages = {1413 -- 1421}, year = {2011}, abstract = {Microviridins are unique protease inhibitors from bloom-forming cyanobacteria that have both ecological and pharmacological relevance. Their peptide backbones are produced ribosomally, and ATP grasp ligases introduce omega-ester and omega-amide bonds to yield rare cage-like structures. Bioinformatic analysis of the microviridin biosynthesis gene cluster suggests a novel type of processing machinery, which could rationalize the challenging in vivo/in vitro reconstitution of the pathway. In this work, we report the establishment of a minimal expression system for microviridins. Through bioinformatics and mutational analysis of the MdnA leader peptide we identified and characterized a strictly conserved binding motif that is specific for microviridin ligases. Furthermore, we showed that the ABC transporter MdnE is crucial for cyclization and processing of microviridins and demonstrated that MdnE is essential for stability of the microviridin biosynthesis complex.}, language = {en} } @article{LiaimerJenkeKodamaIshidaetal.2011, author = {Liaimer, Anton and Jenke-Kodama, Holger and Ishida, Keishi and Hinrichs, Katrin and Stangeland, Janne and Hertweck, Christian and Dittmann-Th{\"u}nemann, Elke}, title = {A polyketide interferes with cellular differentiation in the symbiotic cyanobacterium Nostoc punctiforme}, series = {Environmental microbiology reports}, volume = {3}, journal = {Environmental microbiology reports}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1758-2229}, doi = {10.1111/j.1758-2229.2011.00258.x}, pages = {550 -- 558}, year = {2011}, abstract = {Nostoc punctiforme is a filamentous cyanobacterium capable of forming symbiotic associations with a wide range of plants. The strain exhibits extensive phenotypic characteristics and can differentiate three mutually exclusive cell types: nitrogen-fixing heterocysts, motile hormogonia and spore-like akinetes. Here, we provide evidence for a crucial role of an extracellular metabolite in balancing cellular differentiation. Insertional mutagenesis of a gene of the polyketide synthase gene cluster pks2 led to the accumulation of short filaments carrying mostly terminal heterocysts under diazotrophic conditions. The mutant has a strong tendency to form biofilms on solid surfaces as well as in liquid culture. The pks2-strain keeps forming hormogonia over the entire growth curve and shows an early onset of akinete formation. We could isolate two fractions of the wildtype supernatant that could restore the capability to form long filaments with intercalary heterocysts. Growth of the mutant cells in the neighbourhood of wild-type cells on plates led to a reciprocal influence and a partial reconstruction of wild-type and mutant phenotype respectively. We postulate that extracellular metabolites of Nostoc punctiforme act as life cycle governing factors (LCGFs) and that the ratio between distinct factors may guide the differentiation into different life stages.}, language = {en} } @article{ZiemertIshidaWeizetal.2010, author = {Ziemert, Nadine and Ishida, Keishi and Weiz, Annika and Hertweck, Christian and Dittmann-Th{\"u}nemann, Elke}, title = {Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides}, issn = {0099-2240}, doi = {10.1128/AEM.02858-09}, year = {2010}, abstract = {Microviridins are ribosomally synthesized tricyclic depsipeptides produced by different genera of cyanobacteria. The prevalence of the microviridin gene clusters and the natural diversity of microviridin precursor sequences are currently unknown. Screening of laboratory strains and field samples of the bloom-forming freshwater cyanobacterium Microcystis via PCR revealed global occurrence of the microviridin pathway and an unexpected natural variety. We could detect 15 new variants of the precursor gene mdnA encoding microviridin backbones that differ in up to 4 amino acid positions from known isoforms of the peptide. The survey not only provides insights into the versatility of the biosynthetic enzymes in a closely related group of cyanobacteria, but also facilitates the discovery and characterization of cryptic microviridin variants. This is demonstrated for microviridin L in Microcystis aeruginosa strain NIES843 and heterologously produced variants.}, language = {en} }