@article{FruscalzoFrommerLonderoetal.2017, author = {Fruscalzo, Arrigo and Frommer, Julia-Marie and Londero, Ambrogio P. and Henze, Andrea and Schweigert, Florian J. and Nofer, Jerzy-Roch and Steinhard, Johannes and Klockenbusch, Walter and Schmitz, Ralf and Raila, Jens}, title = {First trimester TTR-RBP4-ROH complex and angiogenic factors in the prediction of small for gestational age infant's outcome}, series = {Archives of gynecology and obstetrics}, volume = {295}, journal = {Archives of gynecology and obstetrics}, publisher = {Springer}, address = {Heidelberg}, issn = {0932-0067}, doi = {10.1007/s00404-017-4338-4}, pages = {1157 -- 1165}, year = {2017}, abstract = {To study the role of the TTR-RBP4-ROH complex components (transthyretin, serum retinol binding protein, retinol) and of angiogenic factors PlGF (placental growth factor) and sFlt-1 (soluble fms-like tyrosine kinase-1) in pregnancies complicated by small for gestational age infants (SGA). Case control study conducted on maternal serum collected between 11 + 0 to 13 + 6 weeks of gestation. TTR, RBP4, ROH, PlGF and sFlt-1 were measured in SGA patients (birth weight < 10\%) who delivered at term (n = 37) and before 37 weeks of gestation (n = 17) and in a matched control group with uneventful pregnancies (n = 37). We found decreased RBP4 in SGA patients that delivered fetuses < 3\% and in fetuses delivered after the 37 weeks of gestation compared to controls [1.50 (95\% CI 1.40-1.75) vs 1.62 (95\% CI 1.47-1.98), p < 0.05]. Further, we found lower PlGF and sFlt-1 concentrations in SGA that delivered before 37 weeks of gestation compared to controls (respectively, PIGF and sFlt-1: 39.7 pg/ml (95\% CI 32.3-66.3) vs 62.9 pg/ml (95\% CI 45.2-78.4) and 906 pg/ml (95\% CI 727-1626) vs 1610 pg/ml (95\% CI 1088-212), p < 0.05). First trimester maternal serum RBP4 and angiogenic factors PlGF and sFlt-1 can differently predict the timing of delivery of pregnancies complicated by SGA fetuses.}, language = {en} } @article{FeddersMuenznerWeberetal.2021, author = {Fedders, Ronja and Muenzner, Matthias and Weber, Pamela and Sommerfeld, Manuela and Knauer, Miriam and Kedziora, Sarah and Kast, Naomi and Heidenreich, Steffi and Raila, Jens and Weger, Stefan and Henze, Andrea and Schupp, Michael}, title = {Liver-secreted RBP4 does not impair glucose homeostasis in mice}, series = {The journal of biological chemistry}, volume = {293}, journal = {The journal of biological chemistry}, number = {39}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1083-351X}, doi = {10.1074/jbc.RA118.004294}, pages = {15269 -- 15276}, year = {2021}, abstract = {Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis.}, language = {en} }