@article{KoetzKosmellaKulickeetal.2002, author = {Koetz, Joachim and Kosmella, Sabine and Kulicke, Werner-Michael and Heinze, Thomas}, title = {Zum Einfluss des L{\"o}sungszustandes von Carboxymethylcellulosen auf das Strukturbildungsverhalten in kolloidalen Systemen}, year = {2002}, language = {de} } @article{KoetzBogenHeinzeetal.1998, author = {Koetz, Joachim and Bogen, Iris and Heinze, Ute and Heinze, Thomas and Klemm, D. and Lange, Silke and Kulicke, Werner-Michael}, title = {Kolloideigenschaften statistisch, blockartig und regioselektiv substituierter Carboxymethylcellulosen}, issn = {0031-1340}, year = {1998}, language = {de} } @article{HeinzeHeinzeGrotheetal.2001, author = {Heinze, Thomas and Heinze, Ute and Grothe, Carsten and Koetz, Joachim and Lazik, Waldemar}, title = {Starch derivatives of high degree of functionalization : 4. Homogeneous tritylation of starch an subsequent carboxymethylation}, year = {2001}, language = {en} } @article{KoetzBogenHeinzeetal.2001, author = {Koetz, Joachim and Bogen, Iris and Heinze, Thomas and Heinze, Ute and Kulicke, Werner-Michael and Lange, Silke}, title = {Pecularities in the physico-chemical behaviour of non-statistically substituted carboxymethylcelluloses}, year = {2001}, language = {en} } @misc{TaubertBalischewskiHentrichetal.2017, author = {Taubert, Andreas and Balischewski, Christian and Hentrich, Doreen and Elschner, Thomas and Eidner, Sascha and G{\"u}nter, Christina and Behrens, Karsten and Heinze, Thomas}, title = {Water-soluble cellulose derivatives are sustainable additives for biomimetic calcium phosphate mineralization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400453}, pages = {17}, year = {2017}, abstract = {The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10\% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.}, language = {en} } @article{TaubertBalischewskiHentrichetal.2016, author = {Taubert, Andreas and Balischewski, Christian and Hentrich, Doreen and Elschner, Thomas and Eidner, Sascha and G{\"u}nter, Christina and Behrens, Karsten and Heinze, Thomas}, title = {Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization}, series = {Inorganics : open access journal}, volume = {4}, journal = {Inorganics : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2304-6740}, doi = {10.3390/inorganics4040033}, pages = {17}, year = {2016}, abstract = {The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10\% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.}, language = {en} }