@misc{EbenhoehHandorf2009, author = {Ebenh{\"o}h, Oliver and Handorf, Thomas}, title = {Functional classification of genome-scale metabolic networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44975}, year = {2009}, abstract = {We propose two strategies to characterize organisms with respect to their metabolic capabilities. The first, investigative, strategy describes metabolic networks in terms of their capability to utilize different carbon sources, resulting in the concept of carbon utilization spectra. In the second, predictive, approach minimal nutrient combinations are predicted from the structure of the metabolic networks, resulting in a characteristic nutrient profile. Both strategies allow for a quantification of functional properties of metabolic networks, allowing to identify groups of organisms with similar functions. We investigate whether the functional description reflects the typical environments of the corresponding organisms by dividing all species into disjoint groups based on whether they are aerotolerant and/or photosynthetic. Despite differences in the underlying concepts, both measures display some common features. Closely related organisms often display a similar functional behavior and in both cases the functional measures appear to correlate with the considered classes of environments. Carbon utilization spectra and nutrient profiles are complementary approaches toward a functional classification of organism-wide metabolic networks. Both approaches contain different information and thus yield different clusterings, which are both different from the classical taxonomy of organisms. Our results indicate that a sophisticated combination of our approaches will allow for a quantitative description reflecting the lifestyles of organisms.}, language = {en} } @article{ChristianMayKempaetal.2009, author = {Christian, Nils and May, Patrick and Kempa, Stefan and Handorf, Thomas and Ebenhoeh, Oliver}, title = {An integrative approach towards completing genome-scale metabolic networks}, issn = {1742-206X}, doi = {10.1039/B915913b}, year = {2009}, abstract = {Genome-scale metabolic networks which have been automatically derived through sequence comparison techniques are necessarily incomplete. We propose a strategy that incorporates genomic sequence data and metabolite profiles into modeling approaches to arrive at improved gene annotations and more complete genome-scale metabolic networks. The core of our strategy is an algorithm that computes minimal sets of reactions by which a draft network has to be extended in order to be consistent with experimental observations. A particular strength of our approach is that alternative possibilities are suggested and thus experimentally testable hypotheses are produced. We carefully evaluate our strategy on the well-studied metabolic network of Escherichia coli, demonstrating how the predictions can be improved by incorporating sequence data. Subsequently, we apply our method to the recently sequenced green alga Chlamydomonas reinhardtii. We suggest specific genes in the genome of Chlamydomonas which are the strongest candidates for coding the responsible enzymes.}, language = {en} }