@article{OverduinHaberlandRybergetal.2015, author = {Overduin, Pier Paul and Haberland, Christian and Ryberg, Trond and Kneier, Fabian and Jacobi, Tim and Grigoriev, Mikhail N. and Ohrnberger, Matthias}, title = {Submarine permafrost depth from ambient seismic noise}, series = {Geophysical research letters}, volume = {42}, journal = {Geophysical research letters}, number = {18}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2015GL065409}, pages = {7581 -- 7588}, year = {2015}, abstract = {Permafrost inundated since the last glacial maximum is degrading, potentially releasing trapped or stabilized greenhouse gases, but few observations of the depth of ice-bonded permafrost (IBP) below the seafloor exist for most of the arctic continental shelf. We use spectral ratios of the ambient vibration seismic wavefield, together with estimated shear wave velocity from the dispersion curves of surface waves, for estimating the thickness of the sediment overlying the IBP. Peaks in spectral ratios modeled for three-layered 1-D systems correspond with varying thickness of the unfrozen sediment. Seismic receivers were deployed on the seabed around Muostakh Island in the central Laptev Sea, Siberia. We derive depths of the IBP between 3.7 and 20.7m15\%, increasing with distance from the shoreline. Correspondence between expected permafrost distribution, modeled response, and observational data suggests that the method is promising for the determination of the thickness of unfrozen sediment.}, language = {en} } @article{MartinHaberlandRietbrock2005, author = {Martin, Sebastian and Haberland, Christian and Rietbrock, Andreas}, title = {Forearc decoupling of guided waves in the Chile-Peru subduction zone}, year = {2005}, abstract = {The structure and alterations of subducted oceanic lithosphere ( e. g., thickness and seismic velocity of oceanic crust) can be obtained by analyzing guided seismic waves generated by earthquakes within the slab (Wadati- Benioff zone). In northern Chile prominent secondary phases from intermediate-depth seismicity, observed in the forearc region can be interpreted as guided waves. For the observation of guided waves it is usually required to have stations close to the wave guide, a fact which is not directly given for forearc stations in subduction zone environments. With the help of finite difference simulations we model the decoupling mechanism of guided waves at the contact between the descending oceanic plate and the upper plate crust where the wave guide is opened due to the equalization of seismic velocities. Provided that suited stations are available, this mechanism allows for the use of intermediate depth seismicity to study the shallow subduction zone structure ( <= 100 km depth)}, language = {en} } @article{MaercklinBedrosianHaberlandetal.2005, author = {Maercklin, Nils and Bedrosian, Paul A. and Haberland, Christian and Ritter, O. and Ryberg, Trond and Weber, Michael H. and Weckmann, U.}, title = {Characterizing a large shear-zone with seismic and magnetotelluric methods : the case of the Dead Sea Transform}, issn = {0094-8276}, year = {2005}, abstract = {Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a similar to 10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1 - 4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others}, language = {en} } @article{MaercklinHaberlandRybergetal.2004, author = {Maercklin, Nils and Haberland, Christian and Ryberg, Trond and Weber, Michael H. and Bartov, Yosef}, title = {Imaging the Dead Sea Transform with scattered seismic waves}, issn = {0956-540X}, year = {2004}, abstract = {With controlled seismic sources and specifically designed receiver arrays, we image a subvertical boundary between two lithological blocks at the Arava Fault (AF) in the Middle East. The AF is the main strike-slip fault of the Dead Sea Transform (DST) in the segment between the Dead Sea and the Red Sea. Our imaging (migration) method is based on array beamforming and coherence analysis of P to P scattered seismic phases. We use a 1-D background velocity model and the direct P arrival as a reference phase. Careful resolution testing is necessary, because the target volume is irregularly sampled by rays. A spread function describing energy dispersion at localized point scatterers and synthetic calculations for large planar structures provides estimates of the resolution of the images. We resolve a 7 km long steeply dipping reflector offset roughly 1 km from the surface trace of the AF. The reflector can be imaged from about 1 km down to 4 km depth. Previous and ongoing studies in this region have shown a strong contrast across the fault: low seismic velocities and electrical resistivities to the west and high velocities and resistivities to the east of it. We therefore suggest that the imaged reflector marks the contrast between young sedimentary fill in the west and Precambrian rocks in the east. If correct, the boundary between the two blocks is offset about 1 km east of the current surface trace of the AF}, language = {en} } @article{HaberlandRietbrockSchurretal.2003, author = {Haberland, Christian and Rietbrock, Andreas and Schurr, B. and Brasse, Heinrich}, title = {Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau}, issn = {0094-8276}, year = {2003}, abstract = {Reassessment of local earthquake data from the ANCORP seismological network allowed the calculation of 3D attenuation (Q(p)) tomographic images of crust and upper mantle beneath the southern Bolivian Altiplano around 21degrees S. The images reveal a low-Q(p) middle and lower crust and a moderate-Q(p) upper mantle beneath the southern Altiplano. Beneath the recent magmatic arc, Q(p) is not significantly decreased at this latitude. The distribution of crustal Q(p) coincides with the variation of electrical resistivity, thus limiting the possible mechanisms causing the anomalies. Our findings support the hypothesis that partial melts in middle and lower crust beneath the Altiplano are present on a large scale. We see no evidence for a shallow asthenosphere beneath the southern Altiplano}, language = {en} } @article{HaberlandHampeAutenriethetal.2019, author = {Haberland, Christian and Hampe, Oliver and Autenrieth, Marijke and Voss, Manja}, title = {Balaenoptera borealis Lesson, 1828}, series = {Mammalia}, volume = {83}, journal = {Mammalia}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0025-1461}, doi = {10.1515/mammalia-2017-0149}, pages = {343 -- 351}, year = {2019}, abstract = {The whereabouts of the Balaenoptera borealis holotype, the skeleton of a 1819 stranded specimen, have been unknown since the World War II (WWII). Due to nomenclatural confusion, deficient documentation, and finally WWII bombing, which destroyed predominantly cetacean material in the Museum fib Naturkunde Berlin (MfN), the type skeleton of the sei whale sank into oblivion. Construction activities enabled a recent search and study on the remaining whale material. Here, we provide evidence that the type specimen was not destroyed. On the basis of species-wide and individual characters of the type material such as the shape of cranial elements and the pattern of the maxillary foramina, we show that the skull and mandibles, the vertebral column (except the atlas), and the ribs of the holotype remain intact. Further evidence that these skeletal remains belong to the previously missing holotype is provided by the characteristics of the spine. In addition, we analyzed ancient DNA from bone samples and confirm they are B. borealis, and the occurrence of same mitochondrial haplotypes indicate that the bones belong to the same individual. Additionally, a blue inscription was discovered at the caudal epiphysis of a thoracic vertebra; historical research matched this inscription with the material belonging to the former Anatomical-Zootomical Museum, from which the holotype was once bought.}, language = {en} } @article{MuksinHaberlandBaueretal.2013, author = {Muksin, Umar and Haberland, Christian and Bauer, Klaus and Weber, Michael H.}, title = {Three-dimensional upper crustal structure of the geothermal system in Tarutung (North Sumatra, Indonesia) revealed by seismic attenuation tomography}, series = {Geophysical journal international}, volume = {195}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt383}, pages = {2037 -- 2049}, year = {2013}, abstract = {The geothermal potential in Tarutung is controlled by both the Sumatra Fault system and young arc volcanism. In this study we use the spatial distribution of seismic attenuation, calculated from local earthquake recordings, to image the 3-D seismic attenuation of the area and relate it with the temperature anomalies and the fluid distribution of the subsurface. A temporary seismic network of 42 stations was deployed around Tarutung and Sarulla (south of Tarutung) for a period of 10 months starting in 2011 May. Within this period, the network recorded 2586 local events. A high-quality subset of 229 events recorded by at least 10 stations was used for the attenuation inversion (tomography). Path-average attenuation (t(p)*) was calculated by using a spectral inversion method. The spread function, the contour lines of the model resolution matrix and the recovery test results show that our 3-D attenuation model (Q(p)) has good resolution around the Tarutung Basin and along the Sarulla graben. High attenuation (low Q(p)) related to the geothermal system is found in the northeast of the Tarutung Basin suggesting fluid pathways from below the Sumatra Fault. The upper part of the studied geothermal system in the Tarutung district seems to be mainly controlled by the fault structure rather than by magmatic activities. In the southwest of the Tarutung Basin, the high attenuation zone is associated with the Martimbang volcano. In the Sarulla region, a low-Q(p) anomaly is found along the graben within the vicinity of the Hopong caldera.}, language = {en} } @article{BraeuerAschHofstetteretal.2012, author = {Braeuer, B. and Asch, G{\"u}nter and Hofstetter, Rami and Haberland, Christian and Jaser, Darweesh and El-Kelani, Radwan J.. and Weber, Michael H.}, title = {Microseismicity distribution in the southern Dead Sea basin and its implications on the structure of the basin}, series = {Geophysical journal international}, volume = {188}, journal = {Geophysical journal international}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2011.05318.x}, pages = {873 -- 878}, year = {2012}, abstract = {While the Dead Sea basin has been studied for a long time, the available knowledge about the detailed seismicity distribution in the area, as well as the deeper structure of the basin, is limited. Therefore, within the framework of the international project DESIRE (DEad Sea Integrated REsearch project), a dense temporary local seismological network was operated in the southern Dead Sea area. We use 530 local earthquakes, having all together 26 730 P- and S-arrival times for a simultaneous inversion of 1-D velocity models, station corrections and precise earthquake locations. Jackknife tests suggest an accuracy of the derived hypocentre locations of about 1 km. Thus, the result is the first clear image of the absolute distribution of the microseismicity of the area, especially in depth. The seismicity is concentrated in the upper crust down to 20 km depth while the lower limit of the seismicity is reached at 31 km depth. The seismic events at the eastern boundary fault (EBF) in the southern part of the study area represent the northward transform motion of the Arabian Plate along the Dead Sea Transform. North of the Boqeq fault the seismic activity represents the transfer of the motion in the pull-apart basin from the eastern to the western boundary. We find that from the surface downward the seismic events are tracing the boundary faults of the basin. The western boundary is mapped down to 12 km depth while the EBF reaches about 17 km depth, forming an asymmetric basin. One fifth of the data set is related to a specific cluster in time and space, which occurred in 2007 February at the western border fault. This cluster is aligned vertically, that is, it is perpendicular to the direction of the dominating left-lateral strike-slip movement at the main transform fault.}, language = {en} } @article{BraeuerAschHofstetteretal.2014, author = {Braeuer, Benjamin and Asch, G{\"u}nter and Hofstetter, Rami and Haberland, Christian and Jaser, D. and El-Kelani, R. and Weber, Michael H.}, title = {Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area}, series = {Journal of seismology}, volume = {18}, journal = {Journal of seismology}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-014-9441-4}, pages = {731 -- 748}, year = {2014}, abstract = {Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults.}, language = {en} } @article{ValesDiasRioetal.2014, author = {Vales, Dina and Dias, Nuno A. and Rio, Ines and Matias, Luis and Silveira, Graca and Madeira, Jose and Weber, Michael H. and Carrilho, Fernando and Haberland, Christian}, title = {Intraplate seismicity across the Cape Verde swell: A contribution from a temporary seismic network}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {636}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.09.014}, pages = {325 -- 337}, year = {2014}, abstract = {We present an analysis and characterization of the regional seismicity recorded by a temporary broadband seismic network deployed in the Cape Verde archipelago between November 2007 and September 2008. The detection of earthquakes was based on spectrograms, allowing the discrimination from low-frequency volcanic signals, resulting in 358 events of which 265 were located, the magnitudes usually being smaller than 3. For the location, a new 1-D P-velocity model was derived for the region showing a crust consistent with an oceanic crustal structure. The seismicity is located mostly offshore the westernmost and geologically youngest areas of the archipelago, near the islands of Santo Antao and Sao Vicente in the NW and Brava and Fogo in the SW. The SW cluster has a lower occurrence rate and corresponds to seismicity concentrated mainly along an alignment between Brava and the Cadamosto seamount presenting normal faulting mechanisms. The existence of the NW cluster, located offshore SW of Santo Antao, was so far unknown and concentrates around a recently recognized submarine cone field; this cluster presents focal depths extending from the crust to the upper mantle and suggests volcanic unrest No evident temporal behaviour could be perceived, although the events tend to occur in bursts of activity lasting a few days. In this recording period, no significant activity was detected at Fogo volcano, the most active volcanic edifice in Cape Verde. The seismicity characteristics point mainly to a volcanic origin. The correlation of the recorded seismicity with active volcanic structures agrees with the tendency for a westward migration of volcanic activity in the archipelago as indicated by the geologic record. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{BraeuerAschHofstetteretal.2012, author = {Br{\"a}uer, B. and Asch, G{\"u}nter and Hofstetter, Rami and Haberland, Christian and Jaser, D. and El-Kelani, R. and Weber, Michael H.}, title = {High-resolution local earthquake tomography of the southern Dead Sea area}, series = {Geophysical journal international}, volume = {191}, journal = {Geophysical journal international}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2012.05668.x}, pages = {881 -- 897}, year = {2012}, abstract = {Local earthquake data from a dense temporary seismological network in the southern Dead Sea area have been analysed within the project DESIRE (Dead Sea Integrated Research Project). Local earthquakes are used for the first precise image of the distribution of the P-wave velocity and the vP/vS ratios. 65 stations registered 655 local events within 18 months of observation time. A subset of 530 well-locatable events with 26 730 P- and S-arrival times was used to calculate a tomographic model for the vP and vP/vS distribution. Since the study area is at first-order 2-D, a gradual approach was chosen, which compromised a 2-D inversion followed by a 3-D inversion. The sedimentary basin fill is clearly imaged through high vP/vS ratios and low vP. The basin fill shows an asymmetric structure with average depth of 7 km at the western boundary and depth between 10 and 14 km at the eastern boundary. This asymmetry is reflected by the vertical strike-slip eastern border fault, and the normal faulting at the western boundary, caused by the transtensional deformation within the last 5 Myr. Within the basin fill the Lisan salt diapir is imaged through low vP/vS ratios, reflecting its low fluid content. The extensions were determined to 12 km in EW and 17 km in NS direction while its depth is 56 km. The thickness of the pre-basin sediments below the basin fill cannot be derived from the tomography datait is estimated to less than 3 km from former investigations. Below the basin, down to 18 km depth very low P-wave velocities and low vP/vS ratios are observedmost likely caused by fluids from the surrounding crust or the upper mantle.}, language = {en} } @article{WeberHelwigBaueretal.2012, author = {Weber, Michael H. and Helwig, S. L. and Bauer, Klaus and Haberland, Christian and Koch, Olaf and Ryberg, T. and Maercklin, N. and Ritter, O. and Schulze, A.}, title = {Near-surface properties of an active fault derived by joint interpretation of different geophysical methods - the Arava/Araba Fault in the Middle East}, series = {Near surface geophysics}, volume = {10}, journal = {Near surface geophysics}, number = {5}, publisher = {European Association of Geoscientists \& Engineers}, address = {Houten}, issn = {1569-4445}, doi = {10.3997/1873-0604.2012031}, pages = {381 -- 390}, year = {2012}, abstract = {The motion of tectonic plates is accommodated at fault zones. One of the unanswered questions about fault zones relates to the role they play in controlling shallow and local hydrology. This study focuses on the Arava/Araba Fault (AF) zone, the southern portion of the Dead Sea Transform (DST) in the Middle East. We combine seismic and electromagnetic methods (EM) to image the geometry and map the petro-physical properties and water occurrence in the top 100 m of this active fault. For three profiles, P-velocity and resistivity images were derived independently. Using a neural network cluster analysis three classes with similar P-velocity and resistivities could then be determined from these images. These classes correspond to spatial domains of specific material and wetness. The first class occurs primarily east of the fault consisting of 'wet' sand (dunes) and brecciated sediments, whereas the second class composed of similar material located west of the fault is 'dry'. The third class lies at depth below ca. 50 m and is composed of highly deformed and weathered Precambrian rocks that constitute the multi-branch fault zone of the AF at this location. The combination of two independent measurements like seismics and EM linked by a stringent mathematical approach has thus shown the potential to delineate the interplay of lithology and water near active faults.}, language = {en} } @article{FrommPlanertJokatetal.2015, author = {Fromm, T. and Planert, Lars and Jokat, Wilfried and Ryberg, Trond and Behrmann, Jan H. and Weber, Michael H. and Haberland, Christian}, title = {South Atlantic opening: A plume-induced breakup?}, series = {Geology}, volume = {43}, journal = {Geology}, number = {10}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G36936.1}, pages = {931 -- 934}, year = {2015}, abstract = {Upwelling hot mantle plumes are thought to disintegrate continental lithosphere and are considered to be drivers of active continental breakup. The formation of the Walvis Ridge during the opening of the South Atlantic is related to a putative plume-induced breakup. We investigated the crustal structure of the Walvis Ridge (southeast Atlantic Ocean) at its intersection with the continental margin and searched for anomalies related to the possible plume head. The overall structure we identify suggests that no broad plume head existed during opening of the South Atlantic and anomalous mantle melting occurred only locally. We therefore question the importance of a plume head as a driver of continental breakup and further speculate that the hotspot was present before the rifting, leaving a track of kimberlites in the African craton.}, language = {en} } @article{RybergHaberlandHaberlauetal.2015, author = {Ryberg, Trond and Haberland, Christian and Haberlau, Thomas and Weber, Michael H. and Bauer, Klaus and Behrmann, Jan H. and Jokat, Wilfried}, title = {Crustal structure of northwest Namibia: Evidence for plume-rift-continent interaction}, series = {Geology}, volume = {43}, journal = {Geology}, number = {8}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G36768.1}, pages = {739 -- 742}, year = {2015}, abstract = {The causes for the formation of large igneous provinces and hotspot trails are still a matter of considerable dispute. Seismic tomography and other studies suggest that hot mantle material rising from the core-mantle boundary (CMB) might play a significant role in the formation of such hotspot trails. An important area to verify this concept is the South Atlantic region, with hotspot trails that spatially coincide with one of the largest low-velocity regions at the CMB, the African large low shear-wave velocity province. The Walvis Ridge started to form during the separation of the South American and African continents at ca. 130 Ma as a consequence of Gondwana breakup. Here, we present the first deep-seismic sounding images of the crustal structure from the landfall area of the Walvis Ridge at the Namibian coast to constrain processes of plume-lithosphere interaction and the formation of continental flood basalts (Parana and Etendeka continental flood basalts) and associated intrusive rocks. Our study identified a narrow region (<100 km) of high-seismic-velocity anomalies in the middle and lower crust, which we interpret as a massive mafic intrusion into the northern Namibian continental crust. Seismic crustal reflection imaging shows a flat Moho as well as reflectors connecting the high-velocity body with shallow crustal structures that we speculate to mark potential feeder channels of the Etendeka continental flood basalt. We suggest that the observed massive but localized mafic intrusion into the lower crust results from similar-sized variations in the lithosphere (i.e., lithosphere thickness or preexisting structures).}, language = {en} } @article{MuksinHaberlandNukmanetal.2014, author = {Muksin, Umar and Haberland, Christian and Nukman, Mochamad and Bauer, Klaus and Weber, Michael H.}, title = {Detailed fault structure of the Tarutung Pull-Apart Basin in Sumatra, Indonesia, derived from local earthquake data}, series = {Journal of Asian earth sciences}, volume = {96}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2014.09.009}, pages = {123 -- 131}, year = {2014}, abstract = {The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE SW to NW SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HaberlandRietbrockLangeetal.2006, author = {Haberland, Christian and Rietbrock, Andreas and Lange, Dietrich and Bataille, Klaus and Hofmann, S.}, title = {Interaction between forearc and oceanic plate at the south-central Chilean margin as seen in local seismic data}, series = {Geophysical research letters}, volume = {33}, journal = {Geophysical research letters}, number = {23}, publisher = {Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2006GL028189}, pages = {5}, year = {2006}, abstract = {We installed a dense, amphibious, temporary seismological network to study the seismicity and structure of the seismogenic zone in southern Chile between 37° and 39°S, the nucleation area of the great 1960 Chile earthquake. 213 local earthquakes with 14.754 onset times were used for a simultaneous inversion for the 1-D velocity model and precise earthquake locations. Relocated artificial shots suggest an accuracy of the earthquake hypocenter of about 1 km (horizontally) and 500 m (vertically). Crustal events along trench-parallel and transverse, deep-reaching faults reflect the interseismic transpressional deformation of the forearc crust due to the subduction of the Nazca plate. The transverse faults seems to accomplish differential lateral stresses between subduction zone segments. Many events situated in an internally structured, planar seismicity patch at 20 to 40 km depth near the coast indicate a stress concentration at the plate's interface at 38°S which might in part be induced by the fragmented forearc structure.}, language = {en} } @article{YuanSobolevKindetal.2000, author = {Yuan, X. H and Sobolev, Stephan Vladimir and Kind, Rainer and Oncken, Onno and Bock, G{\"u}nter and Asch, G{\"u}nter and Schurr, B. and Gr{\"a}ber, F. and Rudloff, Alexander and Hanka, W. and Wylegalla, Kurt and Tibi, R. and Haberland, Christian and Rietbrock, Andreas and Giese, Peter and Wigger, Peter and Rower, P. and Zandt, G. and Beck, S. and Wallace, T. and Pardo, M. and Comte, D.}, title = {Subduction and collision processes in the Central Andes constrained by converted seismic phases}, year = {2000}, language = {en} } @article{GieseGraeberHaberlandetal.1999, author = {Giese, Peter and Graeber, F. and Haberland, Christian and Rietbrock, Andreas and Schurr, B. and Asch, G{\"u}nter}, title = {La sismicidad en los Andes Centrales - una revision}, isbn = {987-97770-1-8}, year = {1999}, language = {de} } @article{OnckenLuschenMechieetal.1999, author = {Oncken, Onno and Luschen, Ewald and Mechie, James and Sobolev, Stephan Vladimir and Schulze, Albrecht and Gaedicke, Christoph and Grunewald, Steffen and Bribach, Jens and Asch, G{\"u}nter and Giese, Peter and Wigger, Peter and Schmitz, Michael and Lueth, Stefan and Scheuber, Ekkehard and Haberland, Christian and Rietbrock, Andreas and G{\"o}tze, Hans-J{\"u}rgen and Brasse, Heinrich and Patzwahl, Regina and Chong, Guillermo and Wilke, Hans-Gerhard and Gonzalez, Gabriel and Jensen, Arturo and Araneda, Manuel and Vieytes, Hugo and Behn, Gerardo and Martinez, Eloy}, title = {Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle}, year = {1999}, language = {en} } @article{PlanertBehrmannJokatetal.2017, author = {Planert, Lars and Behrmann, Jan H. and Jokat, Wilfried and Fromm, Tanja and Ryberg, Trond and Weber, Michael and Haberland, Christian}, title = {The wide-angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {716}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2016.06.024}, pages = {130 -- 148}, year = {2017}, abstract = {Voluminous magmatism during the South Atlantic opening has been considered as a classical example for plume related continental breakup. We present a study of the crustal structure around Walvis Ridge, near the intersection with the African margin. Two wide-angle seismic profiles were acquired. One is oriented NNW-SSE, following the continent-ocean transition and crossing Walvis Ridge. A second amphibious profile runs NW-SE from the Angola Basin into continental Namibia. At the continent-ocean boundary (COB) the mafic crust beneath Walvis Ridge is up to 33 km thick, with a pronounced high-velocity lower crustal body. Towards the south there is a smooth transition to 20-25 km thick crust underlying the COB in the Walvis Basin, with a similar velocity structure, indicating a gabbroic lower crust with associated cumulates at the base. The northern boundary of Walvis Ridge towards the Angola Basin shows a sudden change to oceanic crust only 4-6 km thick, coincident with the projection of the Florianopolis Fracture Zone, one of the most prominent tectonic features of the South Atlantic ocean basin. In the amphibious profile the COB is defined by a sharp transition from oceanic to rifted continental crust, with a magmatic overprint landward of the intersection of Walvis Ridge with the Namibian margin. The continental crust beneath the Congo Craton is 40 km thick, shoaling to 35 km further SE. The velocity models show that massive high-velocity gabbroic intrusives are restricted to a narrow zone directly underneath Walvis Ridge and the COB in the south. This distribution of rift-related magmatism is not easily reconciled with models of continental breakup following the establishment of a large, axially symmetric plume in the Earth's mantle. Rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magma-dominated southern and an essentially amagmatic northern segment.}, language = {en} } @article{WeberAbuAyyashAbueladasetal.2004, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Al-Amoush, H. and Babeyko, Andrey and Bartov, Yosef and Baumann, M. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bribach, Jens and El-Kelani, R. and Forster, A. and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, U. and Garfunkel, Zvi and Grunewald, Steffen and Gotze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, S. and Hofstetter, Alfons and Jackel, K. H. and Kesten, Dagmar and Kind, Rainer and Maercklin, Nils and Mechie, James and Mohsen, Amjad and Neubauer, F. M. and Oberh{\"a}nsli, Roland and Qabbani, I. and Ritter, O. and Rumpker, G. and Rybakov, M. and Ryberg, Trond and Scherbaum, Frank and Schmidt, J. and Schulze, A. and Sobolev, Stephan Vladimir and Stiller, M. and Th,}, title = {The crustal structure of the Dead Sea Transform}, year = {2004}, abstract = {To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries}, language = {en} } @article{WeberAbuAyyashAbueladasetal.2009, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Alasonati-Taš{\´a}rov{\´a}, Zuzana and Al-Zubi, Hashim and Babeyko, Andrey and Bartov, Yuval and Bauer, Klaus and Becken, Michael and Bedrosian, Paul A. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bohnhoff, Marco and Bribach, Jens and Dulski, Peter and Ebbing, Joerg and El-Kelani, Radwan J. and Foerster, Andrea and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, Uri and Garfunkel, Zvi and G{\"o}tze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, Stefan L. and Hofstetter, Alfons and Hoffmann-Rothe, Arne and Jaeckel, Karl-Heinz and Janssen, Christoph and Jaser, Darweesh and Kesten, Dagmar and Khatib, Mohammed Ghiath and Kind, Rainer and Koch, Olaf and Koulakov, Ivan and Laske, Maria Gabi and Maercklin, Nils}, title = {Anatomy of the Dead Sea transform from lithospheric to microscopic scale}, issn = {8755-1209}, doi = {10.1029/2008rg000264}, year = {2009}, abstract = {Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere.}, language = {en} }