@misc{AriasAndresRojasJimenezGrossart2018, author = {Arias-Andres, Maria and Rojas-Jimenez, Keilor and Grossart, Hans-Peter}, title = {Collateral effects of microplastic pollution on aquatic microorganisms}, series = {Trends in Analytical Chemistry}, volume = {112}, journal = {Trends in Analytical Chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0165-9936}, doi = {10.1016/j.trac.2018.11.041}, pages = {234 -- 240}, year = {2018}, abstract = {Microplastics (MP) provide a unique and extensive surface for microbial colonization in aquatic ecosystems. The formation of microorganism-microplastic complexes, such as biofilms, maximizes the degradation of organic matter and horizontal gene transfer. In this context, MP affect the structure and function of microbial communities, which in turn render the physical and chemical fate of MP. This new paradigm generates challenges for microbiology, ecology, and ecotoxicology. Dispersal of MP is concomitant with that of their associated microorganisms and their mobile genetic elements, including antibiotic resistance genes, islands of pathogenicity, and diverse metabolic pathways. Functional changes in aquatic microbiomes can alter carbon metabolism and food webs, with unknown consequences on higher organisms or human microbiomes and hence health. Here, we examine a variety of effects of MP pollution from the microbial ecology perspective, whose repercussions on aquatic ecosystems begin to be unraveled. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @misc{BeisnerGrossartGasol2019, author = {Beisner, Beatrix E. and Grossart, Hans-Peter and Gasol, Josep M.}, title = {A guide to methods for estimating phago-mixotrophy in nanophytoplankton}, series = {Journal of plankton research}, volume = {41}, journal = {Journal of plankton research}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbz008}, pages = {77 -- 89}, year = {2019}, abstract = {Growing attention to phytoplankton mixotrophy as a trophic strategy has led to significant revisions of traditional pelagic food web models and ecosystem functioning. Although some empirical estimates of mixotrophy do exist, a much broader set of in situ measurements are required to (i) identify which organisms are acting as mixotrophs in real time and to (ii) assess the contribution of their heterotrophy to biogeochemical cycling. Estimates are needed through time and across space to evaluate which environmental conditions or habitats favour mixotrophy: conditions still largely unknown. We review methodologies currently available to plankton ecologists to undertake estimates of plankton mixotrophy, in particular nanophytoplankton phago-mixotrophy. Methods are based largely on fluorescent or isotopic tracers, but also take advantage of genomics to identify phylotypes and function. We also suggest novel methods on the cusp of use for phago-mixotrophy assessment, including single-cell measurements improving our capacity to estimate mixotrophic activity and rates in wild plankton communities down to the single-cell level. Future methods will benefit from advances in nanotechnology, micromanipulation and microscopy combined with stable isotope and genomic methodologies. Improved estimates of mixotrophy will enable more reliable models to predict changes in food web structure and biogeochemical flows in a rapidly changing world.}, language = {en} } @misc{BertilssonBurginCareyetal.2013, author = {Bertilsson, Stefan and Burgin, Amy and Carey, Cayelan C. and Fey, Samuel B. and Grossart, Hans-Peter and Grubisic, Lorena M. and Jones, Ian D. and Kirillin, Georgiy and Lennon, Jay T. and Shade, Ashley and Smyth, Robyn L.}, title = {The under-ice microbiome of seasonally frozen lakes}, series = {Limnology and oceanography}, volume = {58}, journal = {Limnology and oceanography}, number = {6}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2013.58.6.1998}, pages = {1998 -- 2012}, year = {2013}, abstract = {Compared to the well-studied open water of the "growing" season, under-ice conditions in lakes are characterized by low and rather constant temperature, slow water movements, limited light availability, and reduced exchange with the surrounding landscape. These conditions interact with ice-cover duration to shape microbial processes in temperate lakes and ultimately influence the phenology of community and ecosystem processes. We review the current knowledge on microorganisms in seasonally frozen lakes. Specifically, we highlight how under-ice conditions alter lake physics and the ways that this can affect the distribution and metabolism of auto-and heterotrophic microorganisms. We identify functional traits that we hypothesize are important for understanding under-ice dynamics and discuss how these traits influence species interactions. As ice coverage duration has already been seen to reduce as air temperatures have warmed, the dynamics of the under-ice microbiome are important for understanding and predicting the dynamics and functioning of seasonally frozen lakes in the near future.}, language = {en} } @misc{BlockDenfeldStockwelletal.2019, author = {Block, Benjamin D. and Denfeld, Blaize A. and Stockwell, Jason D. and Flaim, Giovanna and Grossart, Hans-Peter and Knoll, Lesley B. and Maier, Dominique B. and North, Rebecca L. and Rautio, Milla and Rusak, James A. and Sadro, Steve and Weyhenmeyer, Gesa A. and Bramburger, Andrew J. and Branstrator, Donn K. and Salonen, Kalevi and Hampton, Stephanie E.}, title = {The unique methodological challenges of winter limnology}, series = {Limnology and Oceanography: Methods}, volume = {17}, journal = {Limnology and Oceanography: Methods}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1541-5856}, doi = {10.1002/lom3.10295}, pages = {42 -- 57}, year = {2019}, abstract = {Winter is an important season for many limnological processes, which can range from biogeochemical transformations to ecological interactions. Interest in the structure and function of lake ecosystems under ice is on the rise. Although limnologists working at polar latitudes have a long history of winter work, the required knowledge to successfully sample under winter conditions is not widely available and relatively few limnologists receive formal training. In particular, the deployment and operation of equipment in below 0 degrees C temperatures pose considerable logistical and methodological challenges, as do the safety risks of sampling during the ice-covered period. Here, we consolidate information on winter lake sampling and describe effective methods to measure physical, chemical, and biological variables in and under ice. We describe variation in snow and ice conditions and discuss implications for sampling logistics and safety. We outline commonly encountered methodological challenges and make recommendations for best practices to maximize safety and efficiency when sampling through ice or deploying instruments in ice-covered lakes. Application of such practices over a broad range of ice-covered lakes will contribute to a better understanding of the factors that regulate lakes during winter and how winter conditions affect the subsequent ice-free period.}, language = {en} } @misc{BalintPfenningerGrossartetal.2018, author = {B{\´a}lint, Mikl{\´o}s and Pfenninger, Markus and Grossart, Hans-Peter and Taberlet, Pierre and Vellend, Mark and Leibold, Mathew A. and Englund, Goran and Bowler, Diana}, title = {Environmental DNA time series in ecology}, series = {Trends in ecology \& evolution}, volume = {33}, journal = {Trends in ecology \& evolution}, number = {12}, publisher = {Elsevier}, address = {London}, issn = {0169-5347}, doi = {10.1016/j.tree.2018.09.003}, pages = {945 -- 957}, year = {2018}, abstract = {Ecological communities change in time and space, but long-term dynamics at the century-to-millennia scale are poorly documented due to lack of relevant data sets. Nevertheless, understanding long-term dynamics is important for explaining present-day biodiversity patterns and placing conservation goals in a historical context. Here, we use recent examples and new perspectives to highlight how environmental DNA (eDNA) is starting to provide a powerful new source of temporal data for research questions that have so far been overlooked, by helping to resolve the ecological dynamics of populations, communities, and ecosystems over hundreds to thousands of years. We give examples of hypotheses that may be addressed by temporal eDNA biodiversity data, discuss possible research directions, and outline related challenges.}, language = {en} } @misc{FrenkenAlacidBergeretal.2017, author = {Frenken, Thijs and Alacid, Elisabet and Berger, Stella A. and Bourne, Elizabeth Charlotte and Gerphagnon, Melanie and Großart, Hans-Peter and Gsell, Alena S. and Ibelings, Bas W. and Kagami, Maiko and Kupper, Frithjof C. and Letcher, Peter M. and Loyau, Adeline and Miki, Takeshi and Nejstgaard, Jens C. and Rasconi, Serena and Rene, Albert and Rohrlack, Thomas and Rojas-Jimenez, Keilor and Schmeller, Dirk S. and Scholz, Bettina and Seto, Kensuke and Sime-Ngando, Telesphore and Sukenik, Assaf and Van de Waal, Dedmer B. and Van den Wyngaert, Silke and Van Donk, Ellen and Wolinska, Justyna and Wurzbacher, Christian and Agha, Ramsy}, title = {Integrating chytrid fungal parasites into plankton ecology: research gaps and needs}, series = {Environmental microbiology}, volume = {19}, journal = {Environmental microbiology}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.13827}, pages = {3802 -- 3822}, year = {2017}, abstract = {Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology.}, language = {en} } @misc{GrossartVandenWyngaertKagamietal.2019, author = {Grossart, Hans-Peter and Van den Wyngaert, Silke and Kagami, Maiko and Wurzbacher, Christian and Cunliffe, Michael and Rojas-Jimenz, Keilor}, title = {Fungi in aquatic ecosystems}, series = {Nature reviews. Microbiology}, volume = {17}, journal = {Nature reviews. Microbiology}, number = {6}, publisher = {Nature Publ. Group}, address = {Basingstoke}, issn = {1740-1526}, doi = {10.1038/s41579-019-0175-8}, pages = {339 -- 354}, year = {2019}, abstract = {Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.}, language = {en} } @misc{GrossartRojasJimenez2016, author = {Großart, Hans-Peter and Rojas-Jimenez, Keilor}, title = {Aquatic fungi: targeting the forgotten in microbial ecology}, series = {Current opinion in microbiology}, volume = {31}, journal = {Current opinion in microbiology}, publisher = {Elsevier}, address = {London}, issn = {1369-5274}, doi = {10.1016/j.mib.2016.03.016}, pages = {140 -- 145}, year = {2016}, abstract = {Fungi constitute important and conspicuous components of aquatic microbial communities, but their diversity and functional roles remain poorly characterized. New methods and conceptual frameworks are required to accurately describe their ecological roles, involvement in global cycling processes, and utility for human activities, considering both cultivation independent techniques as well as experiments in laboratory and in natural ecosystems. Here we highlight recent developments and extant knowledge gaps in aquatic mycology, and provide a conceptual model to expose the importance of fungi in aquatic food webs and related biogeochemical processes.}, language = {en} } @misc{KrauseLeRouxNiklausetal.2014, author = {Krause, Sascha and Le Roux, Xavier and Niklaus, Pascal A. and Van Bodegom, Peter M. and Lennon, Jay T. and Bertilsson, Stefan and Grossart, Hans-Peter and Philippot, Laurent and Bodelier, Paul L. E.}, title = {Trait-based approaches for understanding microbial biodiversity and ecosystem functioning}, series = {Frontiers in microbiology}, volume = {5}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2014.00251}, pages = {10}, year = {2014}, abstract = {In ecology, biodiversity-ecosystem functioning (BEE) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEE of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEE using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEE studies are often inadequate to unravel BEE relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEE relationships and thus generating systematic principles in microbial ecology and more generally ecology.}, language = {en} } @misc{MarceGeorgeBuscarinuetal.2016, author = {Marce, Rafael and George, Glen and Buscarinu, Paola and Deidda, Melania and Dunalska, Julita and de Eyto, Elvira and Flaim, Giovanna and Grossart, Hans-Peter and Istvanovics, Vera and Lenhardt, Mirjana and Moreno-Ostos, Enrique and Obrador, Biel and Ostrovsky, Ilia and Pierson, Donald C. and Potuzak, Jan and Poikane, Sandra and Rinke, Karsten and Rodriguez-Mozaz, Sara and Staehr, Peter A. and Sumberova, Katerina and Waajen, Guido and Weyhenmeyer, Gesa A. and Weathers, Kathleen C. and Zion, Mark and Ibelings, Bas W. and Jennings, Eleanor}, title = {Automatic High Frequency Monitoring for Improved Lake and Reservoir Management}, series = {Frontiers in plant science}, volume = {50}, journal = {Frontiers in plant science}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.6b01604}, pages = {10780 -- 10794}, year = {2016}, abstract = {Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied, by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.}, language = {en} } @misc{MuehlenbruchGrossartEigemannetal.2018, author = {M{\"u}hlenbruch, Marco and Grossart, Hans-Peter and Eigemann, Falk and Voss, Maren}, title = {Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria}, series = {Environmental microbiology}, volume = {20}, journal = {Environmental microbiology}, number = {8}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.14302}, pages = {2671 -- 2685}, year = {2018}, abstract = {Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products - mainly polysaccharides - directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the 'phycosphere' and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.}, language = {en} } @misc{RevereyGrossartPremkeetal.2016, author = {Reverey, Florian and Großart, Hans-Peter and Premke, Katrin and Lischeid, Gunnar}, title = {Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {775}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-016-2715-9}, pages = {1 -- 20}, year = {2016}, abstract = {Kettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry-wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry-wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbial responses. Different potential of microbial resilience to drought stress can irretrievably change microbial communities and functional guilds, gearing cascades of functional responses. Hence, dry-wet events can shift the biogeochemical cycling of organic matter and nutrients to a new equilibrium, thus affecting the dynamic balance between carbon burial and mineralization in kettle holes.}, language = {en} } @misc{SenguptaChattopadhyayGrossart2013, author = {Sengupta, Saswati and Chattopadhyay, Madhab K. and Grossart, Hans-Peter}, title = {The multifaceted roles of antibiotics and antibiotic resistance in nature}, series = {Frontiers in microbiology}, volume = {4}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2013.00047}, pages = {13}, year = {2013}, abstract = {Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics in nature.}, language = {en} } @misc{TangGladyshevDubovskayaetal.2014, author = {Tang, Kam W. and Gladyshev, Michail I. and Dubovskaya, Olgo P. and Kirillin, Georgiy and Grossart, Hans-Peter}, title = {Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments}, series = {Journal of plankton research}, volume = {36}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbu014}, pages = {597 -- 612}, year = {2014}, abstract = {Zooplankton carcasses are ubiquitous in marine and freshwater systems, implicating the importance of non-predatory mortality, but both are often overlooked in ecological studies compared with predatory mortality. The development of several microscopic methods allows the distinction between live and dead zooplankton in field samples, and the reported percentages of dead zooplankton average 11.6 (minimum) to 59.8 (maximum) in marine environments, and 7.4 (minimum) to 47.6 (maximum) in fresh and inland waters. Common causes of non-predatory mortality among zooplankton include senescence, temperature change, physical and chemical stresses, parasitism and food-related factors. Carcasses resulting from non-predatory mortality may undergo decomposition leading to an increase in microbial production and a shift in microbial composition in the water column. Alternatively, sinking carcasses may contribute significantly to vertical carbon flux especially outside the phytoplankton growth seasons, and become a food source for the benthos. Global climate change is already altering freshwater ecosystems on multiple levels, and likely will have significant positive or negative effects on zooplankton non-predatory mortality. Better spatial and temporal studies of zooplankton carcasses and non-predatory mortality rates will improve our understanding of this important but under-appreciated topic.}, language = {en} } @misc{TangMcGinnisIonescuetal.2016, author = {Tang, Kam W. and McGinnis, Daniel F. and Ionescu, Danny and Großart, Hans-Peter}, title = {Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {3}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {American Chemical Society}, address = {Washington}, issn = {2328-8930}, doi = {10.1021/acs.estlett.6b00150}, pages = {227 -- 233}, year = {2016}, abstract = {Active methane production in oxygenated lake waters challenges the long-standing paradigm that microbial methane production occurs only under anoxic conditions and forces us to rethink the ecology and environmental dynamics of this powerful greenhouse gas. Methane production in the upper oxic water layers places the methane source closer to the air water interface, where convective mixing and microbubble detrainment can lead to a methane efflux higher than that previously assumed. Microorganisms may produce methane in oxic environments by being equipped with enzymes to counteract the effects of molecular oxygen during methanogenesis or using alternative pathways that do not involve oxygen-sensitive enzymes. As this process appears to be influenced by thermal stratification, water transparency, and primary production, changes in lake ecology due to climate change will alter methane formation in oxic water layers, with far-reaching consequences for methane flux and climate feedback.}, language = {en} } @misc{vanReesWaylenSchmidtKloiberetal.2020, author = {van Rees, Charles B. and Waylen, Kerry A. and Schmidt-Kloiber, Astrid and Thackeray, Stephen J. and Kalinkat, Gregor and Martens, Koen and Domisch, Sami and Lillebo, Ana and Hermoso, Virgilio and Grossart, Hans-Peter and Schinegger, Rafaela and Decleer, Kris and Adriaens, Tim and Denys, Luc and Jaric, Ivan and Janse, Jan H. and Monaghan, Michael T. and De Wever, Aaike and Geijzendorffer, Ilse and Adamescu, Mihai C. and J{\"a}hnig, Sonja C.}, title = {Safeguarding freshwater life beyond 2020}, series = {Conservation letters}, volume = {14}, journal = {Conservation letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-263X}, doi = {10.1111/conl.12771}, pages = {17}, year = {2020}, abstract = {Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity.}, language = {en} }