@article{NegraChaabeneFernandezFernandezetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Fernandez-Fernandez, Jaime and Sammoud, Senda and Bouguezzi, Raja and Prieske, Olaf and Granacher, Urs}, title = {Short-term plyometric Jump training improves repeated-sprint ability in prepuberal male soccer players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {34}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002703}, pages = {3241 -- 3249}, year = {2020}, abstract = {This study examined the effects of a short-term (i.e., 8 weeks) combined horizontal and vertical plyometric jump training (PJT) program in combination with regular soccer-specific training as compared with soccer-specific training only on jump and change of direction (CoD) performances, speed, and repeated-sprint ability (RSA) in prepuberal male soccer players. Twenty-four players were recruited and randomly assigned to either a PJT group (PJT(G); n = 13; 12.7 +/- 0.2 years) or an active control group (CONG; n = 11; 12.7 +/- 0.2 years). The outcome measures included tests for the assessment of jump performance (drop jump from 20- to 40-cm height [DJ20 and DJ40] and 3-hop test [THT]), speed (20-m sprint), CoD (T-test), and RSA (20-m repeated shuttle sprint). Data were analyzed using magnitude-based inferences. Within-group analyses revealed large performance improvements in the T-test (d = -1.2), DJ20 (d = 3.7), DJ40 (d = 3.6), THT (d = 0.6), and the RSA(total) (d = -1.6) in the PJT(G). Between-group analyses showed greater performance improvements in the T-test (d = -2.9), 20-m sprint time (d = -2.0), DJ20 (d = 2.4), DJ40 (d = 2.0), THT (d = 1.9), RSA(best) (d = -1.9), and the RSA(total) (d = -1.9) in the PJT(G) compared with CONG. Eight weeks of an in-season PJT in addition to regular soccer-specific training induced larger increases in measures of physical fitness in prepuberal male soccer players compared with regular soccer-specific training only. More specifically, PJT was effective in improving RSA performance.}, language = {en} } @article{PeitzBehringerGranacher2018, author = {Peitz, Matti and Behringer, Michael and Granacher, Urs}, title = {A systematic review on the effects of resistance and plyometric training on physical fitness in youth}, series = {PlOS ONE}, volume = {13}, journal = {PlOS ONE}, number = {10}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0205525}, pages = {44}, year = {2018}, abstract = {Introduction To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies.}, language = {en} } @article{FernandezFernandezGranacherSanzRivasetal.2018, author = {Fernandez-Fernandez, Jaime and Granacher, Urs and Sanz-Rivas, David and Sarabia Marin, Jose Manuel and Luis Hernandez-Davo, Jose and Moya, Manuel}, title = {Sequencing Effects of Neuromuscular Training on Physical Fitness in Youth Elite Tennis Players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002319}, pages = {849 -- 856}, year = {2018}, abstract = {Fernandez-Fernandez, J, Granacher, U, Sanz-Rivas, D, Sarabia Marin, JM, Hernandez-Davo, JL, and Moya, M. Sequencing effects of neuromuscular training on physical fitness in youth elite tennis players. J Strength Cond Res 32(3): 849-856, 2018-The aim of this study was to analyze the effects of a 5-week neuromuscular training (NMT) implemented before or after a tennis session in prepubertal players on selected components of physical fitness. Sixteen high-level tennis players with a mean age of 12.9 +/- 0.4 years participated in this study, and were assigned to either a training group performing NMT before tennis-specific training (BT; n = 8) or a group that conducted NMT after tennis-specific training (AT; n = 8). Pretest and posttest included: speed (5, 10, and 20 m); modified 5-0-5 agility test; countermovement jump (CMJ); overhead medicine ball throw (MBT); and serve velocity (SV). Results showed that the BT group achieved positive effects from pretest to posttest measures in speed (d = 0.52, 0.32, and 1.08 for 5, 10, and 20 m respectively), 5-0-5 (d = 0.22), CMJ (d = 0.29), MBT (d = 0.51), and SV (d = 0.32), whereas trivial (10 m, 20 m, CMJ, SV, and MBT) or negative effects (d = -0.19 and -0.24 for 5 m and 5-0-5, respectively) were reported for the AT group. The inclusion of an NMT session before the regular tennis training led to positive effects from pretest to posttest measures in performance-related variables (i.e., jump, sprint, change of direction capacity, as well as upper-body power), whereas conducting the same exercise sessions after the regular tennis training was not accompanied by the same improvements.}, language = {en} } @article{SinghKushwahSinghetal.2022, author = {Singh, Gaurav and Kushwah, Gaurav Singh and Singh, Tanvi and Thapa, Rohit Kumar and Granacher, Urs and Ramirez-Campillo, Rodrigo}, title = {Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males}, series = {Journal of sports science \& medicine}, volume = {21}, journal = {Journal of sports science \& medicine}, number = {2}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, doi = {10.52082/jssm.2022.277}, pages = {277 -- 286}, year = {2022}, abstract = {This study aimed at examining the effects of nine weeks of sand-based plyometric jump training (PJT) combined with endurance running on either outdoor or treadmill surface on measures of physical fitness. Male participants (age, 20.1 +/- 1.7 years) were randomly assigned to a sand-based PJT combined with endurance running on outdoor surface (OT, n = 25) or treadmill surface (TT, n = 25). The endurance miming intervention comprised a mixed training method, i.e., long slow distance, tempo, and interval running drills. A control group was additionally included in this study (CG, n = 25). Participants in CG followed their regular physical activity as OT and TT but did not receive any specific intervention. Individuals were assessed for their 50-m linear sprint time, standing long jump (SLJ) distance, cardiorespiratory fitness (i.e., Cooper test), forced vital capacity (FVC), calf girth, and resting heart rate (RHR). A three (groups: OT, TT, CG) by two (time: pre, post) ANOVA for repeated measures was used to analyze the exercise-specific effects. In case of significant group-by-time interactions, Bonferroni adjusted paired (within-group) and independent (between-group comparisons at post) t-tests were used for post-hoc analyses. Significant group-by-time interactions were found for all dependent variables (p < 0.001 - 0.002, eta(2)(p) = 0.16 - 0.78). Group-specific post-hoc tests showed improvements for all variables after OT (p < 0.001, Hedges'g effect size [g] = 0.05 - 1.94) and TT (p < 0.001, g = 0.04 - 2.73), but not in the CG (p = 0.058 - 1.000, g = 0.00 - 0.34). Compared to CG, OT showed larger SLJ (p = 0.001), cardiorespiratory fitness (p = 0.004), FVC (p = 0.008), and RHR (p < 0.001) improvements. TT showed larger improvements in SLJ (p = 0.036), cardiorespiratory fitness (p < 0.001), and RHR (p < 0.001) compared with CG. Compared to OT, TT showed larger improvements for SLJ (p = 0.018). In conclusion, sand-based PJT combined with either OT or TT similarly improved most measures of physical fitness, with greater SLJ improvement after TT. Coaches may use both concurrent exercise regimes based on preferences and logistical constrains (e.g., weather; access to treadmill equipment).}, language = {en} } @article{JafarnezhadgeroPiranHamlabadiSajedietal.2022, author = {Jafarnezhadgero, Amir Ali and Piran Hamlabadi, Milad and Sajedi, Heidar and Granacher, Urs}, title = {Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls}, series = {Gait \& posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Societ{\`a} Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research}, volume = {91}, journal = {Gait \& posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Societ{\`a} Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2021.11.002}, pages = {260 -- 265}, year = {2022}, abstract = {Background: Social isolation through quarantine represents an effective means to prevent COVID-19 infection. A negative side-effect of quarantine is low physical activity. Research question: What are the differences of running kinetics and muscle activities of recreational runners with a history of COVID-19 versus healthy controls? Methods: Forty men and women aged 20-30 years participated in this study and were divided into two experimental groups. Group 1 (age: 24.1 +/- 2.9) consisted of participants with a history of COVID-19 (COVID group) and group 2 (age: 24.2 +/- 2.7) of healthy age and sex-matched controls (controls). Both groups were tested for their running kinetics using a force plate and electromyographic activities (i.e., tibialis anterior [TA], gastrocnemius medialis [Gas-M], biceps femoris [BF], semitendinosus [ST], vastus lateralis [VL], vastus medialis [VM], rectus femoris [RF], gluteus medius [Glut-M]). Results: Results demonstrated higher peak vertical (p = 0.029; d=0.788) and medial (p = 0.004; d=1.119) ground reaction forces (GRFs) during push-off in COVID individuals compared with controls. Moreover, higher peak lateral GRFs were found during heel contact (p = 0.001; d=1.536) in the COVID group. COVID-19 individuals showed a shorter time-to-reach the peak vertical (p = 0.001; d=3.779) and posterior GRFs (p = 0.005; d=1.099) during heel contact. Moreover, the COVID group showed higher Gas-M (p = 0.007; d=1.109) and lower VM activity (p = 0.026; d=0.811) at heel contact. Significance: Different running kinetics and muscle activities were found in COVID-19 individuals versus healthy controls. Therefore, practitioners and therapists are advised to implement balance and/or strength training to improve lower limbs alignment and mediolateral control during dynamic movements in runners who recovered from COVID-19.}, language = {en} } @article{WickKriemlerGranacher2022, author = {Wick, Kristin and Kriemler, Susi and Granacher, Urs}, title = {Associations between measures of physical fitness and cognitive performance in preschool children}, series = {BMC sports science, medicine \& rehabilitation}, volume = {14}, journal = {BMC sports science, medicine \& rehabilitation}, number = {1}, publisher = {BMC}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-022-00470-w}, pages = {8}, year = {2022}, abstract = {Background: Given that recent studies report negative secular declines in physical fitness, associations between fitness and cognition in childhood are strongly discussed. The preschool age is characterized by high neuroplasticity which effects motor skill learning, physical fitness, and cognitive development. The aim of this study was to assess the relation of physical fitness and attention (including its individual dimensions (quantitative, qualitative)) as one domain of cognitive performance in preschool children. We hypothesized that fitness components which need precise coordination compared to simple fitness components are stronger related to attention. Methods: Physical fitness components like static balance (i.e., single-leg stance), muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), and coordination (i.e., hopping on one leg) were assessed in 61 healthy children (mean age 4.5 +/- 0.6 years; girls n = 30). Attention was measured with the "Konzentrations-Handlungsverfahren fur Vorschulkinder" [concentration-action procedure for preschoolers]). Analyses were adjusted for age, body height, and body mass. Results: Results from single linear regression analysis revealed a significant (p < 0.05) association between physical fitness (composite score) and attention (composite score) (standardized ss = 0.40), showing a small to medium effect (F-2 = 0.14). Further, coordination had a significant relation with the composite score and the quantitative dimension of attention (standardized ss = 0.35; p < 0.01; standardized ss = - 0.33; p < 0.05). Coordination explained about 11\% (composite score) and 9\% (quantitative dimension) of the variance in the stepwise multiple regression model. Conclusion: The results indicate that performance in physical fitness, particularly coordination, is related to attention in preschool children. Thus, high performance in complex fitness components (i.e., hopping on one leg) tends to predict attention in preschool children. Further longitudinal studies should focus on the effectiveness of physical activity programs implementing coordination and complex exercises at preschool age to examine cause-effect relationships between physical fitness and attention precisely.}, language = {en} } @article{GolleGranacherHoffmannetal.2014, author = {Golle, Kathleen and Granacher, Urs and Hoffmann, Martin and Wick, Ditmar and M{\"u}hlbauer, Thomas}, title = {Effect of living area and sports club participation on physical fitness in children: a 4 year longitudinal study}, series = {BMC public health}, volume = {14}, journal = {BMC public health}, publisher = {BioMed Central}, address = {London}, issn = {1471-2458}, doi = {10.1186/1471-2458-14-499}, pages = {8}, year = {2014}, abstract = {Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas.}, language = {en} } @article{PrieskeWickGranacher2014, author = {Prieske, Olaf and Wick, Ditmar and Granacher, Urs}, title = {Intrasession and intersession reliability in maximal and explosive isometric torque production of the elbow flexors}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {28}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {6}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, pages = {1771 -- 1777}, year = {2014}, abstract = {The purpose of this study was to assess intrasession and intersession reliability of maximal and explosive isometric torque production of the elbow flexors and its respective neuromuscular activation pattern. Subjects (13 men, age: 24.8 +/- 3.1 years, height: 1.9 +/- 0.1 m, body mass: 83.7 +/- 12.7 kg; and 6 women, age: 26.5 +/- 1.4 years, height: 1.7 +/- 0.1 m, body mass: 62.7 +/- 7.0 kg) were tested and retested 2-7 days later performing unilateral maximal isometric elbow flexions. Absolute (coefficient of variation[CV], test-retest variability[TRV], Bland-Altman plots with 95\% limits of agreement) and relative reliability statistics (intraclass correlation coefficient) were calculated for various mechanical (i.e., maximal isometric torque, rate of torque development, impulse) and electromyographical measures (i.e., mean average voltage) at different time intervals relative to onset of torque (i. e., 30, 50, 100, 200, 300, 400, 100-200 ms). Intraclass correlation coefficient values were >= 0.61 for all mechanical and electromyographical measures and time intervals indicating good to excellent intrasession and intersession reliability. BlandAltman plots confirmed these findings by showing that only 0-2 (<= 3.3\%) data points were beyond the limits of agreement. Regarding torque and electromyographic measures, CV (11.9-32.3\%) and TRV (18.4-53.8\%) values were high during the early intervals of torque development (<= 100 ms) indicating high variability. During the later intervals (>100 ms), lower CV (i. e., 5.0-29.9\%) and TRV values (i.e., 5.4-34.6\%) were observed indicating lower variability. The present study revealed that neuromuscular performance during explosive torque production of the elbow flexors is reproducible in time intervals >100 ms after onset of isometric actions, whereas during earlier time intervals variability is high.}, language = {en} } @article{GolleMuehlbauerWicketal.2015, author = {Golle, Kathleen and M{\"u}hlbauer, Thomas and Wick, Ditmar and Granacher, Urs}, title = {Physical Fitness Percentiles of German Children Aged 9-12 Years: Findings from a Longitudinal Study}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0142393}, pages = {17}, year = {2015}, abstract = {Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i. e., low or high fitness level) to set appropriate fitness goals (i. e., fitness/ health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9-12 years and to compute sex-and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i. e., speed), the 1-kg ball push test, the triple hop test (i. e., upper-and lower-extremity muscular power), the stand-and-reach test (i. e., flexibility), the star run test (i. e., agility), and the 9-min run test (i. e., endurance). Age-and sex-specific percentile values (i. e., P-10 to P-90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age-and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen's d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40-1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10-11 yrs; girls: 9-11 yrs), agility (boys: 9-10 yrs; girls: 9-11 yrs), and endurance (boys: 9-10 yrs; girls: 9-10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407-1,507 m, 1,479-1,597 m, 1,423-1,654 m, and 1,433-1,666 m in 9-to 12-year-old boys and 1,262-1,362 m, 1,329-1,434 m, 1,392-1,501 m, and 1,415-1,526 m in 9-to 12-year-old girls correspond to a "medium" fitness level (i. e., P-40 to P-60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e. g., lower-extremity muscular power) and curvilinear (e. g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age-and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/ grading of children's motor performance.}, language = {en} } @article{BeurskensGollhoferMuehlbaueretal.2015, author = {Beurskens, Rainer and Gollhofer, Albert and M{\"u}hlbauer, Thomas and Cardinale, Marco and Granacher, Urs}, title = {Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {2}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0118535}, pages = {13}, year = {2015}, abstract = {The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80\% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults.}, language = {en} } @article{PrieskeMuehlbauerKruegeretal.2015, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Kibele, A. and Behm, David George and Granacher, Urs}, title = {Sex-Specific effects of surface instability on drop jump and landing biomechanics}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0034-1384549}, pages = {75 -- 81}, year = {2015}, abstract = {This study investigated sex-specific effects of surface instability on kinetics and lower extremity kinematics during drop jumping and landing. Ground reaction forces as well as knee valgus and flexion angles were tested in 14 males (age: 23 +/- 2 years) and 14 females (age: 24 +/- 3 years) when jumping and landing on stable and unstable surfaces. Jump height was found to be significantly lower (9 \%, p < 0.001) when drop jumps were performed on unstable vs. stable surface. Significantly higher peak ground reaction forces were observed when jumping was performed on unstable vs. stable surfaces (5 \%, p = 0.022). Regarding frontal plane kinematics during jumping and landing, knee valgus angles were higher on unstable compared to stable surfaces (1932 \%, p < 0.05). Additionally, at the onset of ground contact during landings, females showed higher knee valgus angles than males (222 \%, p = 0.027). Sagittal plane kinematics indicated significantly smaller knee flexion angles (6-35 \%, p < 0.05) when jumping and landing on unstable vs. stable surfaces. During drop jumps and landings, women showed smaller knee flexion angles at ground contact compared to men (27-33 \%, p < 0.05). These findings imply that knee motion strategies were modified by surface instability and sex during drop jumps and landings.}, language = {en} } @article{SammoudNegraBouguezzietal.2021, author = {Sammoud, Senda and Negra, Yassine and Bouguezzi, Raja and Hachana, Younes and Granacher, Urs and Chaabene, Helmi}, title = {The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers}, series = {Journal of exercise science and fitness : JESF : official journal of The Society of Chinese Scholars on Exercise Physiology and Fitness and Hong Kong Association of Sports Medicine \& Sports Science}, volume = {19}, journal = {Journal of exercise science and fitness : JESF : official journal of The Society of Chinese Scholars on Exercise Physiology and Fitness and Hong Kong Association of Sports Medicine \& Sports Science}, number = {1}, publisher = {Elsevier}, address = {Singapore}, issn = {1728-869x}, doi = {10.1016/j.jesf.2020.07.003}, pages = {25 -- 31}, year = {2021}, abstract = {Background/objective Dry land-training (e.g., plyometric jump training) can be a useful mean to improve swimming performance. This study examined the effects of an 8-week plyometric jump training (PJT) program on jump and sport-specific performances in prepubertal female swimmers. Methods Twenty-two girls were randomly assigned to either a plyometric jump training group (PJTG; n = 12, age: 10.01 ± 0.57 years, maturity-offset = -1.50 ± 0.50, body mass = 36.39 ± 6.32 kg, body height = 146.90 ± 7.62 cm, body mass index = 16.50 ± 1.73 kg/m2) or an active control (CG; n = 10, age: 10.50 ± 0.28 years, maturity-offset = -1.34 ± 0.51, body mass = 38.41 ± 9.42 kg, body height = 143.60 ± 5.05 cm, body mass index = 18.48 ± 3.77 kg/m2). Pre- and post-training, tests were conducted for the assessment of muscle power (e.g., countermovement-jump [CMJ], standing-long-jump [SLJ]). Sport-specific-performances were tested using the timed 25 and 50-m front crawl with a diving-start, timed 25-m front crawl without push-off from the wall (25-m WP), and a timed 25-m kick without push-off from the wall (25-m KWP). Results Findings showed a significant main effect of time for the CMJ (d = 0.78), the SLJ (d = 0.91), 25-m front crawl test (d = 2.5), and the 25-m-KWP (d = 1.38) test. Significant group × time interactions were found for CMJ, SLJ, 25-m front crawl, 50-m front crawl, 25-m KWP, and 25-m WP test (d = 0.29-1.63) in favor of PJTG (d = 1.34-3.50). No significant pre-post changes were found for CG (p > 0.05). Conclusion In sum, PJT is effective in improving muscle power and sport-specific performances in prepubertal swimmers. Therefore, PJT should be included from an early start into the regular training program of swimmers.}, language = {en} } @article{HammamiChaabeneKharratetal.2021, author = {Hammami, Raouf and Chaabene, Helmi and Kharrat, Fatma and Werfelli, Hanen and Duncan, Michael and Rebai, Haithem and Granacher, Urs}, title = {Acute effects of different balance exercise types on selected measures of physical fitness in youth female volleyball players}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {13}, journal = {BMC Sports Science, Medicine and Rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {1758-2555}, doi = {10.1186/s13102-021-00249-5}, pages = {8}, year = {2021}, abstract = {Background Earlier studies have shown that balance training (BT) has the potential to induce performance enhancements in selected components of physical fitness (i.e., balance, muscle strength, power, speed). While there is ample evidence on the long-term effects of BT on components of physical fitness in youth, less is known on the short-term or acute effects of single BT sessions on selected measures of physical fitness. Objective To examine the acute effects of different balance exercise types on balance, change-of-direction (CoD) speed, and jump performance in youth female volleyball players. Methods Eleven female players aged 14 years participated in this study. Three types of balance exercises (i.e., anterior, posterolateral, rotational type) were conducted in randomized order. For each exercise, 3 sets including 5 repetitions were performed. Before and after the performance of the balance exercises, participants were tested for their static balance (center of pressure surface area [CoP SA] and velocity [CoP V]) on foam and firm surfaces, CoD speed (T-Half test), and vertical jump height (countermovement jump [CMJ] height). A 3 (condition: anterior, mediolateral, rotational balance exercise type) × 2 (time: pre, post) analysis of variance was computed with repeated measures on time. Results Findings showed no significant condition × time interactions for all outcome measures (p > 0.05). However, there were small main effects of time for CoP SA on firm and foam surfaces (both d = 0.38; all p < 0.05) with no effect for CoP V on both surface conditions (p > 0.05). For CoD speed, findings showed a large main effect of time (d = 0.91; p < 0.001). However, for CMJ height, no main effect of time was observed (p > 0.05). Conclusions Overall, our results indicated small-to-large changes in balance and CoD speed performances but not in CMJ height in youth female volleyball players, regardless of the balance exercise type. Accordingly, it is recommended to regularly integrate balance exercises before the performance of sport-specific training to optimize performance development in youth female volleyball players.}, language = {en} } @misc{RamirezCampilloAlvarezGarciaHermosoetal.2018, author = {Ramirez-Campillo, Rodrigo and Alvarez, Cristian and Garcia-Hermoso, Antonio and Ramirez-Velez, Robinson and Gentil, Paulo and Asadi, Abbas and Chaabene, Helmi and Moran, Jason and Meylan, Cesar and Garcia-de-Alcaraz, Antonio and Sanchez-Sanchez, Javier and Nakamura, Fabio Y. and Granacher, Urs and Kraemer, William and Izquierdo, Mikel}, title = {Methodological characteristics and future directions for plyometric jump training research}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {5}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0870-z}, pages = {1059 -- 1081}, year = {2018}, abstract = {Recently, there has been a proliferation of published articles on the effect of plyometric jump training, including several review articles and meta-analyses. However, these types of research articles are generally of narrow scope. Furthermore, methodological limitations among studies (e.g., a lack of active/passive control groups) prevent the generalization of results, and these factors need to be addressed by researchers. On that basis, the aims of this scoping review were to (1) characterize the main elements of plyometric jump training studies (e.g., training protocols) and (2) provide future directions for research. From 648 potentially relevant articles, 242 were eligible for inclusion in this review. The main issues identified related to an insufficient number of studies conducted in females, youths, and individual sports (~ 24.0, ~ 37.0, and ~ 12.0\% of overall studies, respectively); insufficient reporting of effect size values and training prescription (~ 34.0 and ~ 55.0\% of overall studies, respectively); and studies missing an active/passive control group and randomization (~ 40.0 and ~ 20.0\% of overall studies, respectively). Furthermore, plyometric jump training was often combined with other training methods and added to participants' daily training routines (~ 47.0 and ~ 39.0\% of overall studies, respectively), thus distorting conclusions on its independent effects. Additionally, most studies lasted no longer than 7 weeks. In future, researchers are advised to conduct plyometric training studies of high methodological quality (e.g., randomized controlled trials). More research is needed in females, youth, and individual sports. Finally, the identification of specific dose-response relationships following plyometric training is needed to specifically tailor intervention programs, particularly in the long term.}, language = {en} } @article{PrieskeDalagerLooksetal.2021, author = {Prieske, Olaf and Dalager, Tina and Looks, Vanessa and Golle, Kathleen and Granacher, Urs}, title = {Physical fitness and psycho-cognitive performance in the young and middle-aged workforce with primarily physical versus mental work demands}, series = {Journal of public health : from theory to practice : official organ of the Deutscher Verband f{\"u}r Gesundheitswissenschaften Public Health e.V. (DVGPH)}, volume = {29}, journal = {Journal of public health : from theory to practice : official organ of the Deutscher Verband f{\"u}r Gesundheitswissenschaften Public Health e.V. (DVGPH)}, number = {1}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {2198-1833}, doi = {10.1007/s10389-019-01099-9}, pages = {75 -- 84}, year = {2021}, abstract = {Aim The purpose of this study was to examine physical fitness and psycho-cognitive performance and their associations in young and middle-aged workers with primarily physical versus mental work demands. Subjects and methods Healthy young and middle-aged workers (73 men, age = 33 +/- 7 years; 75 women, age = 35 +/- 9 years) were recruited from German small-to-medium-sized enterprises (< 250 employees) and classified into groups with primarily mental (MD) or physical demands (PD) at work. Participants were tested for cardiorespiratory fitness, trunk flexor/extensor muscular endurance, handgrip strength, balance, leg muscle power, perceived stress, cognitive performance, and work ability. Results Ninety-four workers were allocated to the MD (53\% females) and 54 to the PD (46\% females) groups. The MD group showed significantly better balance, trunk extensor muscular endurance, and cognitive performance (p < 0.035, 0.35 <= d <= 0.55) and less stress compared with the PD group (p < 0.023, d = 0.38). Group-specific Spearman rank correlation analysis (r(S)) revealed significant small-to-medium-sized correlations between physical fitness and cognitive performance (- 0.205 <= r(S) <= 0.434) in the MD and PD groups. Significant small-to-medium-sized correlations were found for physical fitness and stress/work ability (0.211 <= r(S) <= 0.301) in the MD group only. Further, associations of trunk extensor muscular endurance and work ability were significantly higher in the MD group (r(S) = 0.240) compared with the PD group (r(S) = - 0.141; z = 2.16, p = 0.031). Conclusions MD workers showed better physical fitness measures (balance, trunk extensor muscular endurance) and cognitive performance and lower levels of perceived stress compared with PD workers. Small-to-medium-sized associations between physical fitness and psycho-cognitive performance measures indicate that gains in physical fitness may at least partly contribute to psycho-cognitive performance and/or vice versa, particularly in MD workers.}, language = {en} } @misc{HortobagyiLesinskiGaebleretal.2015, author = {Hortob{\´a}gyi, Tibor and Lesinski, Melanie and G{\"a}bler, Martijn and VanSwearingen, Jessie M. and Malatesta, Davide and Granacher, Urs}, title = {Effects of three types of exercise interventions on healthy old adults' gait speed}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-43115}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431150}, pages = {17}, year = {2015}, abstract = {Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 \% (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 \%; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 \%; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 \%, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset.}, language = {en} } @article{MuehlbauerGranacherBordeetal.2017, author = {Muehlbauer, Thomas and Granacher, Urs and Borde, Ron and Hortobagyi, Tibor}, title = {Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults}, series = {Gerontology}, volume = {64}, journal = {Gerontology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000480150}, pages = {11 -- 18}, year = {2017}, abstract = {Background: Gait speed declines with increasing age, but it is unclear if gait speed preferentially correlates with leg muscle strength or mass. Objective: We determined the relationship between gait speed and (1) leg muscle strength measured at 3 lower extremity joints and (2) leg lean tissue mass (LTM) in healthy young (age: 25 years, n = 20) and old (age: 70 years, n = 20) adults. Methods: Subjects were tested for maximal isokinetic hip, knee, and ankle extension torque, leg LTM by bioimpedance, and gait performance (i.e., gait speed, stride length) at preferred and maximal gait speeds. Results: We found no evidence for a preferential relationship between gait performance and leg muscle strength compared with gait performance and leg LTM in healthy young and old adults. In old adults, hip extensor strength only predicted habitual gait speed (R-2 = 0.29, p = 0.015), whereas ankle plantarflexion strength only predicted maximal gait speed and stride length (both R-2 = 0.40, p = 0.003). Conclusions: Gait speed did not preferentially correlate with leg muscle strength or leg LTM, favoring neither outcome for predicting mobility. Thus, we recommend that both leg muscle strength and leg LTM should be tested and trained complementarily. Further, hip and ankle extension torque predicted gait performance, and thus we recommend to test and train healthy old adults by functional integrated multiarticular rather than monoarticular lower extremity strength exercises.}, language = {en} } @article{BrahmsHortobagyiKressigetal.2021, author = {Brahms, Clemens Markus and Hortob{\´a}gyi, Tibor and Kressig, Reto W. and Granacher, Urs}, title = {The Interaction between mobility status and exercise specificity in older adults}, series = {Exercise and sport sciences reviews}, volume = {49}, journal = {Exercise and sport sciences reviews}, number = {1}, publisher = {Lippincott Williams \& Wilkins}, address = {Hagerstown, Md.}, issn = {0091-6331}, doi = {10.1249/JES.0000000000000237}, pages = {15 -- 22}, year = {2021}, abstract = {Many adults older than 60 yr experience mobility limitations. Although physical exercise improves older adults' mobility, differences in baseline mobility produce large variations in individual responses to interventions, and these responses could further vary by the type and dose of exercise. Here, we propose an exercise prescription model for older adults based on their current mobility status.}, language = {en} } @article{PrieskeDalagerHerzetal.2019, author = {Prieske, Olaf and Dalager, Tina and Herz, Michael and Hortobagyi, Tibor and Sjogaard, Gisela and Sogaard, Karen and Granacher, Urs}, title = {Effects of Physical Exercise Training in the Workplace on Physical Fitness: A Systematic Review and Meta-analysis}, series = {Sports medicine}, volume = {49}, journal = {Sports medicine}, number = {12}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-019-01179-6}, pages = {1903 -- 1921}, year = {2019}, abstract = {Background There is evidence that physical exercise training (PET) conducted at the workplace is effective in improving physical fitness and thus health. However, there is no current systematic review available that provides high-level evidence regarding the effects of PET on physical fitness in the workforce. Objectives To quantify sex-, age-, and occupation type-specific effects of PET on physical fitness and to characterize dose-response relationships of PET modalities that could maximize gains in physical fitness in the working population. Data Sources A computerized systematic literature search was conducted in the databases PubMed and Cochrane Library (2000-2019) to identify articles related to PET in workers. Study Eligibility Criteria Only randomized controlled trials with a passive control group were included if they investigated the effects of PET programs in workers and tested at least one fitness measure. Study Appraisal and Synthesis Methods Weighted mean standardised mean differences (SMDwm) were calculated using random effects models. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (e.g., training frequency, session duration, intensity) on the effectiveness of PET on measures of physical fitness. Further, subgroup univariate analyses were computed for each training modality. Additionally, methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, 3423 workers aged 30-56 years participated in 17 studies (19 articles) that were eligible for inclusion. Methodological quality of the included studies was moderate with a median PEDro score of 6. Our analyses revealed significant, small-sized effects of PET on cardiorespiratory fitness (CRF), muscular endurance, and muscle power (0.29 <= SMDwm <= 0.48). Medium effects were found for CRF and muscular endurance in younger workers (<= 45 years) (SMDwm = 0.71) and white-collar workers (SMDwm = 0.60), respectively. Multivariate random effects meta-regression for CRF revealed that none of the examined training modalities predicted the effects of PET on CRF (R-2 = 0). Independently computed subgroup analyses showed significant PET effects on CRF when conducted for 9-12 weeks (SMDwm = 0.31) and for 17-20 weeks (SMDwm = 0.74). Conclusions PET effects on physical fitness in healthy workers are moderated by age (CRF) and occupation type (muscular endurance). Further, independently computed subgroup analyses indicated that the training period of the PET programs may play an important role in improving CRF in workers.}, language = {en} } @article{JararnezhadgeroMamashliGranacher2021, author = {Jararnezhadgero, AmirAli and Mamashli, Elaheh and Granacher, Urs}, title = {An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.654755}, pages = {1 -- 15}, year = {2021}, abstract = {Background: The prevalence of diabetes worldwide is predicted to increase from 2.8\% in 2000 to 4.4\% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45-65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40-55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001-0.037; d = 0.56-1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001-0.044; d = 0.54-0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics.}, language = {en} }