@misc{DelfanVahedBishopetal.2022, author = {Delfan, Maryam and Vahed, Alieh and Bishop, David and Juybari, Raheleh Amadeh and Laher, Ismail and Saeidi, Ayoub and Granacher, Urs and Zouhal, Hassane}, title = {Effects of two workload-matched high intensity interval training protocols on regulatory factors associated with mitochondrial biogenesis in the soleus muscle of diabetic rats}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56444}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564441}, pages = {1 -- 12}, year = {2022}, abstract = {Aims: High intensity interval training (HIIT) improves mitochondrial characteristics. This study compared the impact of two workload-matched high intensity interval training (HIIT) protocols with different work:recovery ratios on regulatory factors related to mitochondrial biogenesis in the soleus muscle of diabetic rats. Materials and methods: Twenty-four Wistar rats were randomly divided into four equal-sized groups: non-diabetic control, diabetic control (DC), diabetic with long recovery exercise [4-5 × 2-min running at 80\%-90\% of the maximum speed reached with 2-min of recovery at 40\% of the maximum speed reached (DHIIT1:1)], and diabetic with short recovery exercise (5-6 × 2-min running at 80\%-90\% of the maximum speed reached with 1-min of recovery at 30\% of the maximum speed reached [DHIIT2:1]). Both HIIT protocols were completed five times/week for 4 weeks while maintaining equal running distances in each session. Results: Gene and protein expressions of PGC-1α, p53, and citrate synthase of the muscles increased significantly following DHIIT1:1 and DHIIT2:1 compared to DC (p ˂ 0.05). Most parameters, except for PGC-1α protein (p = 0.597), were significantly higher in DHIIT2:1 than in DHIIT1:1 (p ˂ 0.05). Both DHIIT groups showed significant increases in maximum speed with larger increases in DHIIT2:1 compared with DHIIT1:1. Conclusion: Our findings indicate that both HIIT protocols can potently up-regulate gene and protein expression of PGC-1α, p53, and CS. However, DHIIT2:1 has superior effects compared with DHIIT1:1 in improving mitochondrial adaptive responses in diabetic rats.}, language = {en} } @misc{JafarnezhadgeroAmirzadehFatollahietal.2022, author = {Jafarnezhadgero, Amir Ali and Amirzadeh, Nasrin and Fatollahi, Amir and Siahkouhian, Marefat and de Souza Castelo Oliveira, Anderson and Granacher, Urs}, title = {Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55756}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557567}, pages = {1 -- 10}, year = {2022}, abstract = {Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability.}, language = {en} } @misc{DelfanJuybariGorganiFiruzjaeeetal.2022, author = {Delfan, Maryam and Juybari, Raheleh Amadeh and Gorgani-Firuzjaee, Sattar and Nielsen, Jens H{\o}iriis and Delfan, Neda and Laher, Ismail and Saeidi, Ayoub and Granacher, Urs and Zouhal, Hassane}, title = {High-Intensity Interval Training Improves Cardiac Function by miR-206 Dependent HSP60 Induction in Diabetic Rats}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {802}, issn = {1866-8364}, doi = {10.25932/publishup-56723}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567238}, pages = {11}, year = {2022}, abstract = {Objective: A role for microRNAs is implicated in several biological and pathological processes. We investigated the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on molecular markers of diabetic cardiomyopathy in rats. Methods: Eighteen male Wistar rats (260 ± 10 g; aged 8 weeks) with streptozotocin (STZ)-induced type 1 diabetes mellitus (55 mg/kg, IP) were randomly allocated to three groups: control, MICT, and HIIT. The two different training protocols were performed 5 days each week for 5 weeks. Cardiac performance (end-systolic and end-diastolic dimensions, ejection fraction), the expression of miR-206, HSP60, and markers of apoptosis (cleaved PARP and cytochrome C) were determined at the end of the exercise interventions. Results: Both exercise interventions (HIIT and MICT) decreased blood glucose levels and improved cardiac performance, with greater changes in the HIIT group (p < 0.001, η2: 0.909). While the expressions of miR-206 and apoptotic markers decreased in both training protocols (p < 0.001, η2: 0.967), HIIT caused greater reductions in apoptotic markers and produced a 20\% greater reduction in miR-206 compared with the MICT protocol (p < 0.001). Furthermore, both training protocols enhanced the expression of HSP60 (p < 0.001, η2: 0.976), with a nearly 50\% greater increase in the HIIT group compared with MICT. Conclusions: Our results indicate that both exercise protocols, HIIT and MICT, have the potential to reduce diabetic cardiomyopathy by modifying the expression of miR-206 and its downstream targets of apoptosis. It seems however that HIIT is even more effective than MICT to modulate these molecular markers.}, language = {en} } @misc{JafarnezhadgeroFakhriGranacher2021, author = {Jafarnezhadgero, Amir Ali and Fakhri, Ehsan and Granacher, Urs}, title = {Effects of nail softness and stiffness with distance running shoes on ground reaction forces and vertical loading rates in male elite long-distance runners with pronated feet}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, volume = {13}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55027}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550274}, pages = {1 -- 9}, year = {2021}, abstract = {Background To improve propulsion during running, athletes often wear spike shoes designed for training and/or competition. Running with spike shoes may cause pain and/or injuries. To address this problem, a modified spike shoe was tested. This study aimed to evaluate the effects of running with dual-versus single-stiffness spike running shoes on running mechanics in long-distance runners with pronated feet. Methods Sixteen male elite (national competitive level) runners (5000 or 10,000 m) aged 28.2 ± 2.5 years with pronated feet volunteered to participate in this study. To be included, participants had to have achieved personal best race times over 5- and/or 10-km races under 17 or 34 min during official running competitions. All participants were heel strikers and had a history of 11.2 ± 4.2 years of training. For the assessment of running kinetics, a force plate was imbedded into a walkway. Running kinematics were recorded using a Vicon-motion-capture system. Nike Zoom Rival shoes (Nike, Nike Zoom Rival, USA) were selected and adapted according to spike softness and stiffness. Participants ran at a constant speed of ~4.0 m/s across the walkway with both shoe conditions in randomized order. Six trials were recorded per condition. The main outcomes included peak ground reaction forces and their time-to-peak, average and instantaneous vertical loading rates, free moments, and peak ankle eversion angles. Results Paired t-tests revealed significantly lower lateral (p = 0.021, d = 0.95) and vertical (p = 0.010, d = 1.40) forces at heel contact during running with dual-stiffness spike shoes. Running with dual-stiffness spike shoes resulted in a significantly longer time-to-peak vertical (p = 0.004, d = 1.40) force at heel contact. The analysis revealed significantly lower average (p = 0.005, d = 0.46) and instantaneous (p = 0.021, d = 0.49) loading rates and peak negative free moment amplitudes (p = 0.016, d = 0.81) when running with dual-stiffness spike shoes. Finally, significantly lower peak ankle eversion angles were observed with dual-stiffness spike shoes (p < 0.001, d = 1.29). Conclusions Running in dual- compared with single-stiffness spike distance running shoes resulted in lower loading rates, free moment amplitudes, and peak ankle eversion angles of long-distance runners with pronated feet.}, language = {en} } @article{MuehlbauerGranacherJockeletal.2013, author = {M{\"u}hlbauer, Thomas and Granacher, Urs and Jockel, Bj{\"o}rn and Kittel, R{\´e}ne}, title = {Analyse der Muskelaktivit{\"a}t therapeutischer Kletter{\"u}bungen}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {27}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0033-1335595}, pages = {162 -- 168}, year = {2013}, abstract = {Background: Therapeutic climbing exercises are employed for the treatment of shoulder-and knee-joint injuries. However, there is a void in the literature regarding muscle activation levels during the performance of these exercises. Thus, the purpose of this study was to investigate differences in muscle activation during therapeutic climbing exercises depending on the degree of task difficulty. Participants/Material and Methods: A sample of 10 healthy subjects (sex: 4 females, 6 males; age: 27 +/- 3 years; climbing experience: 5 +/- 3 years) performed three shoulder girdle (i.e., wide shoulder pull, narrow shoulder pull, shoulder row) and two leg extensor (i.e., ascending frontal, ascending sidewards) exercises. Electromyographic (EMG) data were recorded on the right side for eleven muscles and then normalised using the maximum voluntary contractions for each muscle. Results: With increasing task difficulty, muscle activity in all but one muscle (i.e., m. trapezius ascendens) increased significantly for the three shoulder girdle exercises. For the two leg extensor exercises, an increase in task difficulty produced a tendency towards yet not significantly higher muscle activity. Conclusion: Shoulder row was the most effective therapeutic climbing exercise in the ability to activate muscles while showing the highest EMG signals. The absence of significant differences in muscle activity between the two leg extensor exercises indicates their equivalent use for muscle activation during therapy.}, language = {de} } @misc{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52403}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524034}, pages = {24}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @misc{JararnezhadgeroMamashliGranacher2021, author = {Jararnezhadgero, AmirAli and Mamashli, Elaheh and Granacher, Urs}, title = {An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54118}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541182}, pages = {1 -- 15}, year = {2021}, abstract = {Background: The prevalence of diabetes worldwide is predicted to increase from 2.8\% in 2000 to 4.4\% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45-65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40-55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001-0.037; d = 0.56-1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001-0.044; d = 0.54-0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics.}, language = {en} } @misc{KasmiZouhalHammamietal.2021, author = {Kasmi, Sofien and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Hackney, Anthony C. and Hammami, Amri and Chtara, Moktar and Chortane, Sabri Gaied and Ben Salah, Fatma Zohra and Granacher, Urs and Ben Ounis, Omar}, title = {The Effects of Eccentric and Plyometric Training Programs and Their Combination on Stability and the Functional Performance in the Post-ACL-Surgical Rehabilitation Period of Elite Female Athletes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54393}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-543939}, pages = {1 -- 11}, year = {2021}, abstract = {Background: The standard method to treat physically active patients with anterior cruciate ligament (ACL) rupture is ligament reconstruction surgery. The rehabilitation training program is very important to improve functional performance in recreational athletes following ACL reconstruction. Objectives: The aims of this study were to compare the effects of three different training programs, eccentric training (ECC), plyometric training (PLYO), or combined eccentric and plyometric training (COMB), on dynamic balance (Y-BAL), the Lysholm Knee Scale (LKS), the return to sport index (RSI), and the leg symmetry index (LSI) for the single leg hop test for distance in elite female athletes after ACL surgery. Materials and Methods: Fourteen weeks after rehabilitation from surgery, 40 elite female athletes (20.3 ± 3.2 years), who had undergone an ACL reconstruction, participated in a short-term (6 weeks; two times a week) training study. All participants received the same rehabilitation protocol prior to the training study. Athletes were randomly assigned to three experimental groups, ECC (n = 10), PLYO (n = 10), and COMB (n = 10), and to a control group (CON: n = 10). Testing was conducted before and after the 6-week training programs and included the Y-BAL, LKS, and RSI. LSI was assessed after the 6-week training programs only. Results: Adherence rate was 100\% across all groups and no training or test-related injuries were reported. No significant between-group baseline differences (pre-6-week training) were observed for any of the parameters. Significant group-by-time interactions were found for Y-BAL (p < 0.001, ES = 1.73), LKS (p < 0.001, ES = 0.76), and RSI (p < 0.001, ES = 1.39). Contrast analysis demonstrated that COMB yielded significantly greater improvements in Y-BAL, LKS, and RSI (all p < 0.001), in addition to significantly better performances in LSI (all p < 0.001), than CON, PLYO, and ECC, respectively. Conclusion: In conclusion, combined (eccentric/plyometric) training seems to represent the most effective training method as it exerts positive effects on both stability and functional performance in the post-ACL-surgical rehabilitation period of elite female athletes.}, language = {en} } @misc{SariatiZouhalHammamietal.2021, author = {Sariati, Dorsaf and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Nebigh, Ammar and Chtara, Moktar and Hackney, Anthony C. and Souissi, Nizar and Granacher, Urs and Ben Ounis, Omar}, title = {Association Between Mental Imagery and Change of Direction Performance in Young Elite Soccer Players of Different Maturity Status}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54465}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544655}, pages = {1 -- 9}, year = {2021}, abstract = {Previous studies have not considered the potential influence of maturity status on the relationship between mental imagery and change of direction (CoD) speed in youth soccer. Accordingly, this cross-sectional study examined the association between mental imagery and CoD performance in young elite soccer players of different maturity status. Forty young male soccer players, aged 10-17 years, were assigned into two groups according to their predicted age at peak height velocity (PHV) (Pre-PHV; n = 20 and Post-PHV; n = 20). Participants were evaluated on soccer-specific tests of CoD with (CoDBall-15m) and without (CoD-15m) the ball. Participants completed the movement imagery questionnaire (MIQ) with the three- dimensional structure, internal visual imagery (IVI), external visual imagery (EVI), as well as kinesthetic imagery (KI). The Post-PHV players achieved significantly better results than Pre-PHV in EVI (ES = 1.58, large; p < 0.001), CoD-15m (ES = 2.09, very large; p < 0.001) and CoDBall-15m (ES = 1.60, large; p < 0.001). Correlations were significantly different between maturity groups, where, for the pre-PHV group, a negative very large correlation was observed between CoDBall-15m and KI (r = -0.73, p = 0.001). For the post-PHV group, large negative correlations were observed between CoD-15m and IVI (r = -0.55, p = 0.011), EVI (r = -062, p = 0.003), and KI (r = -0.52, p = 0.020). A large negative correlation of CoDBall-15m with EVI (r = -0.55, p = 0.012) and very large correlation with KI (r = -0.79, p = 0.001) were also observed. This study provides evidence of the theoretical and practical use for the CoD tasks stimulus with imagery. We recommend that sport psychology specialists, coaches, and athletes integrated imagery for CoD tasks in pre-pubertal soccer players to further improve CoD related performance.}, language = {en} } @misc{ChaabeneLesinskiBehmetal.2020, author = {Chaabene, Helmi and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Performance- and healthrelated benefits of youth resistance training}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {3}, issn = {1866-8364}, doi = {10.25932/publishup-52691}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526912}, pages = {12}, year = {2020}, abstract = {There is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths' exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.}, language = {en} } @misc{GranacherMuehlbauerGoestemeyeretal.2021, author = {Granacher, Urs and Muehlbauer, Thomas and G{\"o}stemeyer, Gerd and Gruber, Stefanie and Gruber, Markus}, title = {The performance of balance exercises during daily tooth brushing is not sufficient to improve balance and muscle strength in healthy older adults}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52937}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-529379}, pages = {9}, year = {2021}, abstract = {Background High prevalence rates have been reported for physical inactivity, mobility limitations, and falls in older adults. Home-based exercise might be an adequate means to increase physical activity by improving health- (i.e., muscle strength) and skill-related components of physical fitness (i.e., balance), particularly in times of restricted physical activity due to pandemics. Objective The objective of this study was to examine the effects of home-based balance exercises conducted during daily tooth brushing on measures of balance and muscle strength in healthy older adults. Methods Fifty-one older adults were randomly assigned to a balance exercise group (n = 27; age: 65.1 ± 1.1 years) or a passive control group (n = 24; age: 66.2 ± 3.3 years). The intervention group conducted balance exercises over a period of eight weeks twice daily for three minutes each during their daily tooth brushing routine. Pre- and post-intervention, tests were included for the assessment of static steady-state balance (i.e., Romberg test), dynamic steady-state balance (i.e., 10-m single and dual-task walk test using a cognitive and motor interference task), proactive balance (i.e., Timed-Up-and-Go Test [TUG], Functional-Reach-Test [FRT]), and muscle strength (i.e., Chair-Rise-Test [CRT]). Results Irrespective of group, the statistical analysis revealed significant main effects for time (pre vs. post) for dual-task gait speed (p < .001, 1.12 ≤ d ≤ 2.65), TUG (p < .001, d = 1.17), FRT (p = .002, d = 0.92), and CRT (p = .002, d = 0.94) but not for single-task gait speed and for the Romberg-Test. No significant group × time interactions were found for any of the investigated variables. Conclusions The applied lifestyle balance training program conducted twice daily during tooth brushing routines appears not to be sufficient in terms of exercise dosage and difficulty level to enhance balance and muscle strength in healthy adults aged 60-72 years. Consequently, structured balance training programs using higher exercise dosages and/or more difficult balance tasks are recommended for older adults to improve balance and muscle strength.}, language = {en} } @misc{KuemmelBergmannPrieskeetal.2018, author = {K{\"u}mmel, Jakob and Bergmann, Julian and Prieske, Olaf and Kramer, Andreas and Granacher, Urs and Gruber, Markus}, title = {Effects of conditioning hops on drop jump and sprint performance}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {439}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407236}, pages = {8}, year = {2018}, abstract = {Background: It has previously been shown that conditioning activities consisting of repetitive hops have the potential to induce better drop jump (DJ) performance in recreationally active individuals. In the present pilot study, we investigated whether repetitive conditioning hops can also increase reactive jump and sprint performance in sprint-trained elite athletes competing at an international level. Methods: Jump and sprint performances of 5 athletes were randomly assessed under 2 conditions. The control condition (CON) comprised 8 DJs and 4 trials of 30-m sprints. The intervention condition (HOP) consisted of 10 maximal repetitive two-legged hops that were conducted 10 s prior to each single DJ and sprint trial. DJ performance was analyzed using a one-dimensional ground reaction force plate. Step length (SL), contact time (CT), and sprint time (ST) during the 30-m sprints were recorded using an opto-electronic measurement system. Results: Following the conditioning activity, DJ height and external DJ peak power were both significantly increased by 11 \% compared to the control condition. All other variables did not show any significant differences between HOP and CON. Conclusions: In the present pilot study, we were able to demonstrate large improvements in DJ performance even in sprint-trained elite athletes following a conditioning activity consisting of maximal two-legged repetitive hops. This strengthens the hypothesis that plyometric conditioning exercises can induce performance enhancements in elite athletes that are even greater than those observed in recreationally active athletes.. In addition, it appears that the transfer of these effects to other stretch-shortening cycle activities is limited, as we did not observe any changes in sprint performance following the plyometric conditioning activity.}, language = {en} } @article{GranacherMuehlbauerGoestemeyeretal.2021, author = {Granacher, Urs and Muehlbauer, Thomas and G{\"o}stemeyer, Gerd and Gruber, Stefanie and Gruber, Markus}, title = {The performance of balance exercises during daily tooth brushing is not sufficient to improve balance and muscle strength in healthy older adults}, series = {BMC Geriatrics}, volume = {21}, journal = {BMC Geriatrics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2318}, doi = {10.1186/s12877-021-02206-w}, pages = {9}, year = {2021}, abstract = {Background High prevalence rates have been reported for physical inactivity, mobility limitations, and falls in older adults. Home-based exercise might be an adequate means to increase physical activity by improving health- (i.e., muscle strength) and skill-related components of physical fitness (i.e., balance), particularly in times of restricted physical activity due to pandemics. Objective The objective of this study was to examine the effects of home-based balance exercises conducted during daily tooth brushing on measures of balance and muscle strength in healthy older adults. Methods Fifty-one older adults were randomly assigned to a balance exercise group (n = 27; age: 65.1 ± 1.1 years) or a passive control group (n = 24; age: 66.2 ± 3.3 years). The intervention group conducted balance exercises over a period of eight weeks twice daily for three minutes each during their daily tooth brushing routine. Pre- and post-intervention, tests were included for the assessment of static steady-state balance (i.e., Romberg test), dynamic steady-state balance (i.e., 10-m single and dual-task walk test using a cognitive and motor interference task), proactive balance (i.e., Timed-Up-and-Go Test [TUG], Functional-Reach-Test [FRT]), and muscle strength (i.e., Chair-Rise-Test [CRT]). Results Irrespective of group, the statistical analysis revealed significant main effects for time (pre vs. post) for dual-task gait speed (p < .001, 1.12 ≤ d ≤ 2.65), TUG (p < .001, d = 1.17), FRT (p = .002, d = 0.92), and CRT (p = .002, d = 0.94) but not for single-task gait speed and for the Romberg-Test. No significant group × time interactions were found for any of the investigated variables. Conclusions The applied lifestyle balance training program conducted twice daily during tooth brushing routines appears not to be sufficient in terms of exercise dosage and difficulty level to enhance balance and muscle strength in healthy adults aged 60-72 years. Consequently, structured balance training programs using higher exercise dosages and/or more difficult balance tasks are recommended for older adults to improve balance and muscle strength.}, language = {en} } @misc{GebelLesinskiBehmetal.2018, author = {Gebel, Arnd and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Effects and dose-response relationship of balance training on balance performance in Youth}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {9}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0926-0}, pages = {2067 -- 2089}, year = {2018}, abstract = {Background Effects and dose-response relationships of balance training on measures of balance are well-documented for healthy young and old adults. However, this has not been systematically studied in youth. Objectives The objectives of this systematic review and meta-analysis were to quantify effects of balance training (BT) on measures of static and dynamic balance in healthy children and adolescents. Additionally, dose-response relations for BT modalities (e.g. training period, frequency, volume) were quantified through the analysis of controlled trials. Data Sources A computerized systematic literature search was conducted in the electronic databases PubMed and Web of Science from January 1986 until June 2017 to identify articles related to BT in healthy trained and untrained children and adolescents. Study Eligibility Criteria A systematic approach was used to evaluate articles that examined the effects of BT on balance outcomes in youth. Controlled trials with pre- and post-measures were included if they examined healthy youth with a mean age of 6-19 years and assessed at least one measure of balance (i.e. static/dynamic steady-state balance, reactive balance, proactive balance) with behavioural (e.g. time during single-leg stance) or biomechanical (e.g. centre of pressure displacements during single-leg stance) test methods. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: training modalities (i.e. training period, frequency, volume), balance outcomes (i.e. static and dynamic balance) as well as chronological age, sex (male vs. female), training status (trained vs. untrained), setting (school vs. club), and testing method (biomechanical vs. physical fitness test). Weighted mean standardized mean differences (SMDwm) were calculated using a random-effects model to compute overall intervention effects relative to active and passive control groups. Between-study heterogeneity was assessed using I 2 and chi(2) statistics. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (i.e. training period, training frequency, total number of training sessions, duration of training sessions, and total duration of training per week) on the effectiveness of BT on measures of balance performance. Further, subgroup univariate analyses were computed for each training modality. Additionally, dose-response relationships were characterized independently by interpreting the modality specific magnitude of effect sizes. Methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, our literature search revealed 198 hits of which 17 studies were eligible for inclusion in this systematic review and meta-analysis. Irrespective of age, sex, training status, sport discipline and training method, moderate to large BT-related effects were found for measures of static (SMDwm = 0.71) and dynamic (SMDwm = 1.03) balance in youth. However, our subgroup analyses did not reveal any statistically significant effects of the moderator variables age, sex, training status, setting and testing method on overall balance (i.e. aggregation of static and dynamic balance). BT-related effects in adolescents were moderate to large for measures of static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance. With regard to the dose-response relationships, findings from the multivariate random effects meta-regression revealed that none of the examined training modalities predicted the effects of BT on balance performance in adolescents (R-2 = 0.00). In addition, results from univariate analysis have to be interpreted with caution because training modalities were computed as single factors irrespective of potential between-modality interactions. For training period, 12 weeks of training achieved the largest effect (SMDwm = 1.40). For training frequency, the largest effect was found for two sessions per week (SMDwm = 1.29). For total number of training sessions, the largest effect was observed for 24-36 sessions (SMDwm = 1.58). For the modality duration of a single training session, 4-15 min reached the largest effect (SMDwm = 1.03). Finally, for the modality training per week, a total duration of 31-60 min per week (SMDwm = 1.33) provided the largest effects on overall balance in adolescents. Methodological quality of the studies was rated as moderate with a median PEDro score of 6.0. Limitations Dose-response relationships were calculated independently for training modalities (i.e. modality specific) and not interdependently. Training intensity was not considered for the calculation of dose-response relationships because the included studies did not report this training modality. Further, the number of included studies allowed the characterization of dose-response relationships in adolescents for overall balance only. In addition, our analyses revealed a considerable between-study heterogeneity (I-2 = 66-83\%). The results of this meta-analysis have to be interpreted with caution due to their preliminary status. Conclusions BT is a highly effective means to improve balance performance with moderate to large effects on static and dynamic balance in healthy youth irrespective of age, sex, training status, setting and testing method. The examined training modalities did not have a moderating effect on balance performance in healthy adolescents. Thus, we conclude that an additional but so far unidentified training modality may have a major effect on balance performance that was not assessed in our analysis. Training intensity could be a promising candidate. However, future studies are needed to find appropriate methods to assess BT intensity.}, language = {en} } @article{ElAshkerChaabeneNegraetal.2018, author = {El-Ashker, Said and Chaabene, Helmi and Negra, Yassine and Prieske, Olaf and Granacher, Urs}, title = {Cardio-Respiratory Endurance Responses Following a Simulated 3 x 3 Minutes Amateur Boxing Contest in Elite Level Boxers}, series = {Sports}, volume = {6}, journal = {Sports}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2075-4663}, doi = {10.3390/sports6040119}, pages = {8}, year = {2018}, abstract = {This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90\% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90\% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining.}, language = {en} } @article{JafarnezhadgeroFakhriGranacher2021, author = {Jafarnezhadgero, Amir Ali and Fakhri, Ehsan and Granacher, Urs}, title = {Effects of nail softness and stiffness with distance running shoes on ground reaction forces and vertical loading rates in male elite long-distance runners with pronated feet}, series = {BMC sports science, medicine \& rehabilitation}, volume = {13}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-021-00352-7}, pages = {1 -- 9}, year = {2021}, abstract = {Background To improve propulsion during running, athletes often wear spike shoes designed for training and/or competition. Running with spike shoes may cause pain and/or injuries. To address this problem, a modified spike shoe was tested. This study aimed to evaluate the effects of running with dual-versus single-stiffness spike running shoes on running mechanics in long-distance runners with pronated feet. Methods Sixteen male elite (national competitive level) runners (5000 or 10,000 m) aged 28.2 ± 2.5 years with pronated feet volunteered to participate in this study. To be included, participants had to have achieved personal best race times over 5- and/or 10-km races under 17 or 34 min during official running competitions. All participants were heel strikers and had a history of 11.2 ± 4.2 years of training. For the assessment of running kinetics, a force plate was imbedded into a walkway. Running kinematics were recorded using a Vicon-motion-capture system. Nike Zoom Rival shoes (Nike, Nike Zoom Rival, USA) were selected and adapted according to spike softness and stiffness. Participants ran at a constant speed of ~4.0 m/s across the walkway with both shoe conditions in randomized order. Six trials were recorded per condition. The main outcomes included peak ground reaction forces and their time-to-peak, average and instantaneous vertical loading rates, free moments, and peak ankle eversion angles. Results Paired t-tests revealed significantly lower lateral (p = 0.021, d = 0.95) and vertical (p = 0.010, d = 1.40) forces at heel contact during running with dual-stiffness spike shoes. Running with dual-stiffness spike shoes resulted in a significantly longer time-to-peak vertical (p = 0.004, d = 1.40) force at heel contact. The analysis revealed significantly lower average (p = 0.005, d = 0.46) and instantaneous (p = 0.021, d = 0.49) loading rates and peak negative free moment amplitudes (p = 0.016, d = 0.81) when running with dual-stiffness spike shoes. Finally, significantly lower peak ankle eversion angles were observed with dual-stiffness spike shoes (p < 0.001, d = 1.29). Conclusions Running in dual- compared with single-stiffness spike distance running shoes resulted in lower loading rates, free moment amplitudes, and peak ankle eversion angles of long-distance runners with pronated feet.}, language = {en} } @misc{RamirezCampilloMoranOliveretal.2022, author = {Ramirez-Campillo, Rodrigo and Moran, Jason and Oliver, Jonathan L. and Pedley, Jason S. and Lloyd, Rhodri S. and Granacher, Urs}, title = {Programming Plyometric-Jump Training in Soccer: A Review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {813}, issn = {1866-8364}, doi = {10.25932/publishup-58103}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581031}, pages = {20}, year = {2022}, abstract = {The aim of this review was to describe and summarize the scientific literature on programming parameters related to jump or plyometric training in male and female soccer players of different ages and fitness levels. A literature search was conducted in the electronic databases PubMed, Web of Science and Scopus using keywords related to the main topic of this study (e.g., "ballistic" and "plyometric"). According to the PICOS framework, the population for the review was restricted to soccer players, involved in jump or plyometric training. Among 7556 identified studies, 90 were eligible for inclusion. Only 12 studies were found for females. Most studies (n = 52) were conducted with youth male players. Moreover, only 35 studies determined the effectiveness of a given jump training programming factor. Based on the limited available research, it seems that a dose of 7 weeks (1-2 sessions per week), with ~80 jumps (specific of combined types) per session, using near-maximal or maximal intensity, with adequate recovery between repetitions (<15 s), sets (≥30 s) and sessions (≥24-48 h), using progressive overload and taper strategies, using appropriate surfaces (e.g., grass), and applied in a well-rested state, when combined with other training methods, would increase the outcome of effective and safe plyometric-jump training interventions aimed at improving soccer players physical fitness. In conclusion, jump training is an effective and easy-to-administer training approach for youth, adult, male and female soccer players. However, optimal programming for plyometric-jump training in soccer is yet to be determined in future research.}, language = {en} } @article{HelmPrieskeMuehlbaueretal.2018, author = {Helm, Norman and Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Chaabene, Helmi and Granacher, Urs}, title = {Validation of a new judo-specific ergometer system in male elite and sub-elite athletes}, series = {Journal of sports science \& medicine}, volume = {17}, journal = {Journal of sports science \& medicine}, number = {3}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, pages = {465 -- 474}, year = {2018}, abstract = {Our experimental approach included two studies to determine discriminative validity and test-retest reliability (study 1) as well as ecological validity (study 2) of a judo ergometer system while performing judo-specific movements. Sixteen elite (age: 23 +/- 3 years) and 11 sub-elite (age: 16 +/- 1 years) athletes participated in study 1 and 14 male sub-elite judo athletes participated in study 2. Discriminative validity and test-retest reliability of sport-specific parameters (mechanical work, maximal force) were assessed during pulling movements with and without tsukuri (kuzushi). Ecological validity of muscle activity was determined by performing pulling movements using the ergometer without tsukuri and during the same movements against an opponent. In both conditions, electromyographic activity of trunk (e.g., m. erector spinae) and upper limb muscles (e.g., m. biceps brachii) were assessed separately for the lifting and pulling arm. Elite athletes showed mostly better mechanical work, maximal force, and power (0.12 <= d <= 1.80) compared with sub-elite athletes. The receiver operating characteristic analysis revealed acceptable validity of the JERGo(C) system to discriminate athletes of different performance levels predominantly during kuzushi without tsukuri (area under the curve = 0.27-0.90). Moreover, small-to-medium discriminative validity was found to detect meaningful performance changes for mechanical work and maximal force. The JERGo(C) system showed small-to-high relative (ICC = 0.37-0.92) and absolute reliability (SEM = 10.8-18.8\%). Finally, our analyses revealed acceptable correlations (r = 0.41-0.88) between muscle activity during kuzushi performed with the JERGo(C) system compared with a judo opponent. Our findings indicate that the JERGo(C) system is a valid and reliable test instrument for the assessment and training of judo-specific pulling kinetics particularly during kuzushi movement without tsukuri.}, language = {en} } @article{ZouitaZouhalFerchichietal.2020, author = {Zouita, Sghaier and Zouhal, Hassane and Ferchichi, Habiba and Paillard, Thierry and Dziri, Catherine and Hackney, Anthony C. and Laher, Ismail and Granacher, Urs and Ben Moussa Zouita, Amira}, title = {Effects of Combined Balance and Strength Training on Measures of Balance and Muscle Strength in Older Women With a History of Falls}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.619016}, pages = {13}, year = {2020}, abstract = {Objective: We investigated the effects of combined balance and strength training on measures of balance and muscle strength in older women with a history of falls. Methods: Twenty-seven older women aged 70.4 ± 4.1 years (age range: 65 to 75 years) were randomly allocated to either an intervention (IG, n = 12) or an active control (CG, n = 15) group. The IG completed 8 weeks combined balance and strength training program with three sessions per week including visual biofeedback using force plates. The CG received physical therapy and gait training at a rehabilitation center. Training volumes were similar between the groups. Pre and post training, tests were applied for the assessment of muscle strength (weight-bearing squat [WBS] by measuring the percentage of body mass borne by each leg at different knee flexions [0°, 30°, 60°, and 90°], sit-to-stand test [STS]), and balance. Balance tests used the modified clinical test of sensory interaction (mCTSIB) with eyes closed (EC) and opened (EO), on stable (firm) and unstable (foam) surfaces as well as spatial parameters of gait such as step width and length (cm) and walking speed (cm/s). Results: Significant group × time interactions were found for different degrees of knee flexion during WBS (0.0001 < p < 0.013, 0.441 < d < 0.762). Post hoc tests revealed significant pre-to-post improvements for both legs and for all degrees of flexion (0.0001 < p < 0.002, 0.697 < d < 1.875) for IG compared to CG. Significant group × time interactions were found for firm EO, foam EO, firm EC, and foam EC (0.006 < p < 0.029; 0.302 < d < 0.518). Post hoc tests showed significant pre-to-post improvements for both legs and for all degrees of oscillations (0.0001 < p < 0.004, 0.753 < d < 2.097) for IG compared to CG. This study indicates that combined balance and strength training improved percentage distribution of body weight between legs at different conditions of knee flexion (0°, 30°, 60°, and 90°) and also decreased the sway oscillation on a firm surface with eyes closed, and on foam surface (with eyes opened or closed) in the IG. Conclusion: The higher positive effects of training seen in standing balance tests, compared with dynamic tests, suggests that balance training exercises including lateral, forward, and backward exercises improved static balance to a greater extent in older women.}, language = {en} } @misc{BouamraZouhalRateletal.2022, author = {Bouamra, Marwa and Zouhal, Hassane and Ratel, S{\´e}bastien and Makhlouf, Issam and Bezrati, Ikram and Chtara, Moktar and Behm, David George and Granacher, Urs and Chaouachi, Anis}, title = {Concurrent Training Promotes Greater Gains on Body Composition and Components of Physical Fitness Than Single-Mode Training (Endurance or Resistance) in Youth With Obesity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56397}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563974}, pages = {1 -- 16}, year = {2022}, abstract = {The prevalence of obesity in the pediatric population has become a major public health issue. Indeed, the dramatic increase of this epidemic causes multiple and harmful consequences, Physical activity, particularly physical exercise, remains to be the cornerstone of interventions against childhood obesity. Given the conflicting findings with reference to the relevant literature addressing the effects of exercise on adiposity and physical fitness outcomes in obese children and adolescents, the effect of duration-matched concurrent training (CT) [50\% resistance (RT) and 50\% high-intensity-interval-training (HIIT)] on body composition and physical fitness in obese youth remains to be elucidated. Thus, the purpose of this study was to examine the effects of 9-weeks of CT compared to RT or HIIT alone, on body composition and selected physical fitness components in healthy sedentary obese youth. Out of 73 participants, only 37; [14 males and 23 females; age 13.4 ± 0.9 years; body-mass-index (BMI): 31.2 ± 4.8 kg·m-2] were eligible and randomized into three groups: HIIT (n = 12): 3-4 sets×12 runs at 80-110\% peak velocity, with 10-s passive recovery between bouts; RT (n = 12): 6 exercises; 3-4 sets × 10 repetition maximum (RM) and CT (n = 13): 50\% serial completion of RT and HIIT. CT promoted significant greater gains compared to HIIT and RT on body composition (p < 0.01, d = large), 6-min-walking test distance (6 MWT-distance) and on 6 MWT-VO2max (p < 0.03, d = large). In addition, CT showed substantially greater improvements than HIIT in the medicine ball throw test (20.2 vs. 13.6\%, p < 0.04, d = large). On the other hand, RT exhibited significantly greater gains in relative hand grip strength (p < 0.03, d = large) and CMJ (p < 0.01, d = large) than HIIT and CT. CT promoted greater benefits for fat, body mass loss and cardiorespiratory fitness than HIIT or RT modalities. This study provides important information for practitioners and therapists on the application of effective exercise regimes with obese youth to induce significant and beneficial body composition changes. The applied CT program and the respective programming parameters in terms of exercise intensity and volume can be used by practitioners as an effective exercise treatment to fight the pandemic overweight and obesity in youth.}, language = {en} } @misc{NobariMahmoudzadehKhaliliDencheZamoranoetal.2022, author = {Nobari, Hadi and Mahmoudzadeh Khalili, Sara and Denche Zamorano, Angel Manuel and ‪Bowman, ‪Thomas G. and Granacher, Urs}, title = {Workload is associated with the occurrence of non-contact injuries in professional male soccer players: A pilot study}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56221}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562216}, pages = {1 -- 9}, year = {2022}, abstract = {Injuries in professional soccer are a significant concern for teams, and they are caused amongst others by high training load. This cohort study describes the relationship between workload parameters and the occurrence of non-contact injuries, during weeks with high and low workload in professional soccer players throughout the season. Twenty-one professional soccer players aged 28.3 ± 3.9 yrs. who competed in the Iranian Persian Gulf Pro League participated in this 48-week study. The external load was monitored using global positioning system (GPS, GPSPORTS Systems Pty Ltd) and the type of injury was documented daily by the team's medical staff. Odds ratio (OR) and relative risk (RR) were calculated for non-contact injuries for high- and low-load weeks according to acute (AW), chronic (CW), acute to chronic workload ratio (ACWR), and AW variation (Δ-Acute) values. By using Poisson distribution, the interval between previous and new injuries were estimated. Overall, 12 non-contact injuries occurred during high load and 9 during low load weeks. Based on the variables ACWR and Δ-AW, there was a significantly increased risk of sustaining non-contact injuries (p < 0.05) during high-load weeks for ACWR (OR: 4.67), and Δ-AW (OR: 4.07). Finally, the expected time between injuries was significantly shorter in high load weeks for ACWR [1.25 vs. 3.33, rate ratio time (RRT)] and Δ-AW (1.33 vs. 3.45, RRT) respectively, compared to low load weeks. The risk of sustaining injuries was significantly larger during high workload weeks for ACWR, and Δ-AW compared with low workload weeks. The observed high OR in high load weeks indicate that there is a significant relationship between workload and occurrence of non-contact injuries. The predicted time to new injuries is shorter in high load weeks compared to low load weeks. Therefore, the frequency of injuries is higher during high load weeks for ACWR and Δ-AW. ACWR and Δ-AW appear to be good indicators for estimating the injury risk, and the time interval between injuries.}, language = {en} } @misc{GranacherSchellbachKleinetal.2016, author = {Granacher, Urs and Schellbach, J{\"o}rg and Klein, Katja and Prieske, Olaf and Baeyens, Jean-Pierre and M{\"u}hlbauer, Thomas}, title = {Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93490}, pages = {11}, year = {2016}, abstract = {Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22\%, f = 0.47-0.76), the jumping sideways test (4-5\%, f = 1.07), and the Y balance test (2-3\%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3\%, f = 0.39) and the stand-and-reach test (0-2\%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2\%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS.}, language = {en} } @article{JafarnezhadgeroAmirzadehFatollahietal.2022, author = {Jafarnezhadgero, Amir Ali and Amirzadeh, Nasrin and Fatollahi, Amir and Siahkouhian, Marefat and de Souza Castelo Oliveira, Anderson and Granacher, Urs}, title = {Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.822024}, pages = {1 -- 10}, year = {2022}, abstract = {Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability.}, language = {en} } @article{GranacherKissLueder2018, author = {Granacher, Urs and Kiss, Rainer and L{\"u}der, Benjamin}, title = {Single- and Dual-Task Balance Training Are Equally Effective in Youth}, series = {Frontiers in Psychology}, volume = {9}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.00912}, pages = {1 -- 12}, year = {2018}, abstract = {Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45\%, p < 0.001, d = 2.4), and stride time (-44\%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.}, language = {en} } @article{NegraChaabeneFernandezFernandezetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Fernandez-Fernandez, Jaime and Sammoud, Senda and Bouguezzi, Raja and Prieske, Olaf and Granacher, Urs}, title = {Short-term plyometric Jump training improves repeated-sprint ability in prepuberal male soccer players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {34}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002703}, pages = {3241 -- 3249}, year = {2020}, abstract = {This study examined the effects of a short-term (i.e., 8 weeks) combined horizontal and vertical plyometric jump training (PJT) program in combination with regular soccer-specific training as compared with soccer-specific training only on jump and change of direction (CoD) performances, speed, and repeated-sprint ability (RSA) in prepuberal male soccer players. Twenty-four players were recruited and randomly assigned to either a PJT group (PJT(G); n = 13; 12.7 +/- 0.2 years) or an active control group (CONG; n = 11; 12.7 +/- 0.2 years). The outcome measures included tests for the assessment of jump performance (drop jump from 20- to 40-cm height [DJ20 and DJ40] and 3-hop test [THT]), speed (20-m sprint), CoD (T-test), and RSA (20-m repeated shuttle sprint). Data were analyzed using magnitude-based inferences. Within-group analyses revealed large performance improvements in the T-test (d = -1.2), DJ20 (d = 3.7), DJ40 (d = 3.6), THT (d = 0.6), and the RSA(total) (d = -1.6) in the PJT(G). Between-group analyses showed greater performance improvements in the T-test (d = -2.9), 20-m sprint time (d = -2.0), DJ20 (d = 2.4), DJ40 (d = 2.0), THT (d = 1.9), RSA(best) (d = -1.9), and the RSA(total) (d = -1.9) in the PJT(G) compared with CONG. Eight weeks of an in-season PJT in addition to regular soccer-specific training induced larger increases in measures of physical fitness in prepuberal male soccer players compared with regular soccer-specific training only. More specifically, PJT was effective in improving RSA performance.}, language = {en} } @misc{LesinskiPrieskeGranacher2016, author = {Lesinski, Melanie and Prieske, Olaf and Granacher, Urs}, title = {Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {50}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, publisher = {BMJ Publishing Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsports-2015-095497}, pages = {781 -- 795}, year = {2016}, abstract = {Objectives To quantify age, sex, sport and training type-specific effects of resistance training on physical performance, and to characterise dose-response relationships of resistance training parameters that could maximise gains in physical performance in youth athletes. Design Systematic review and meta-analysis of intervention studies. Data sources Studies were identified by systematic literature search in the databases PubMed and Web of Science (1985-2015). Weighted mean standardised mean differences (SMDwm) were calculated using random-effects models. Eligibility criteria for selecting studies Only studies with an active control group were included if these investigated the effects of resistance training in youth athletes (6-18 years) and tested at least one physical performance measure. Results 43 studies met the inclusion criteria. Our analyses revealed moderate effects of resistance training on muscle strength and vertical jump performance (SMDwm 0.8-1.09), and small effects on linear sprint, agility and sport-specific performance (SMDwm 0.58-0.75). Effects were moderated by sex and resistance training type. Independently computed dose-response relationships for resistance training parameters revealed that a training period of >23 weeks, 5 sets/exercise, 6-8 repetitions/set, a training intensity of 80-89\% of 1 repetition maximum (RM), and 3-4 min rest between sets were most effective to improve muscle strength (SMDwm 2.09-3.40). Summary/conclusions Resistance training is an effective method to enhance muscle strength and jump performance in youth athletes, moderated by sex and resistance training type. Dose-response relationships for key training parameters indicate that youth coaches should primarily implement resistance training programmes with fewer repetitions and higher intensities to improve physical performance measures of youth athletes.}, language = {en} } @article{LacroixKressigMuehlbaueretal.2016, author = {Lacroix, Andre and Kressig, Reto W. and M{\"u}hlbauer, Thomas and Gschwind, Yves J. and Pfenninger, Barbara and Bruegger, Othmar and Granacher, Urs}, title = {Effects of a Supervised versus an Uniupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial}, series = {Gerontology}, volume = {62}, journal = {Gerontology}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000442087}, pages = {275 -- 288}, year = {2016}, abstract = {Background: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. Objective:This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Methods: Sixty-six older adults (men: 25, women: 41; age 73 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Results: Adherence rates to training were 92\% for SUP and 97\% for UNSUP. BST resulted in significant group x time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Conclusion: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90\%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. (C) 2015 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{PeitzBehringerGranacher2018, author = {Peitz, Matti and Behringer, Michael and Granacher, Urs}, title = {A systematic review on the effects of resistance and plyometric training on physical fitness in youth}, series = {PlOS ONE}, volume = {13}, journal = {PlOS ONE}, number = {10}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0205525}, pages = {44}, year = {2018}, abstract = {Introduction To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies.}, language = {en} } @article{FernandezFernandezGranacherSanzRivasetal.2018, author = {Fernandez-Fernandez, Jaime and Granacher, Urs and Sanz-Rivas, David and Sarabia Marin, Jose Manuel and Luis Hernandez-Davo, Jose and Moya, Manuel}, title = {Sequencing Effects of Neuromuscular Training on Physical Fitness in Youth Elite Tennis Players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002319}, pages = {849 -- 856}, year = {2018}, abstract = {Fernandez-Fernandez, J, Granacher, U, Sanz-Rivas, D, Sarabia Marin, JM, Hernandez-Davo, JL, and Moya, M. Sequencing effects of neuromuscular training on physical fitness in youth elite tennis players. J Strength Cond Res 32(3): 849-856, 2018-The aim of this study was to analyze the effects of a 5-week neuromuscular training (NMT) implemented before or after a tennis session in prepubertal players on selected components of physical fitness. Sixteen high-level tennis players with a mean age of 12.9 +/- 0.4 years participated in this study, and were assigned to either a training group performing NMT before tennis-specific training (BT; n = 8) or a group that conducted NMT after tennis-specific training (AT; n = 8). Pretest and posttest included: speed (5, 10, and 20 m); modified 5-0-5 agility test; countermovement jump (CMJ); overhead medicine ball throw (MBT); and serve velocity (SV). Results showed that the BT group achieved positive effects from pretest to posttest measures in speed (d = 0.52, 0.32, and 1.08 for 5, 10, and 20 m respectively), 5-0-5 (d = 0.22), CMJ (d = 0.29), MBT (d = 0.51), and SV (d = 0.32), whereas trivial (10 m, 20 m, CMJ, SV, and MBT) or negative effects (d = -0.19 and -0.24 for 5 m and 5-0-5, respectively) were reported for the AT group. The inclusion of an NMT session before the regular tennis training led to positive effects from pretest to posttest measures in performance-related variables (i.e., jump, sprint, change of direction capacity, as well as upper-body power), whereas conducting the same exercise sessions after the regular tennis training was not accompanied by the same improvements.}, language = {en} } @article{SinghKushwahSinghetal.2022, author = {Singh, Gaurav and Kushwah, Gaurav Singh and Singh, Tanvi and Thapa, Rohit Kumar and Granacher, Urs and Ramirez-Campillo, Rodrigo}, title = {Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males}, series = {Journal of sports science \& medicine}, volume = {21}, journal = {Journal of sports science \& medicine}, number = {2}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, doi = {10.52082/jssm.2022.277}, pages = {277 -- 286}, year = {2022}, abstract = {This study aimed at examining the effects of nine weeks of sand-based plyometric jump training (PJT) combined with endurance running on either outdoor or treadmill surface on measures of physical fitness. Male participants (age, 20.1 +/- 1.7 years) were randomly assigned to a sand-based PJT combined with endurance running on outdoor surface (OT, n = 25) or treadmill surface (TT, n = 25). The endurance miming intervention comprised a mixed training method, i.e., long slow distance, tempo, and interval running drills. A control group was additionally included in this study (CG, n = 25). Participants in CG followed their regular physical activity as OT and TT but did not receive any specific intervention. Individuals were assessed for their 50-m linear sprint time, standing long jump (SLJ) distance, cardiorespiratory fitness (i.e., Cooper test), forced vital capacity (FVC), calf girth, and resting heart rate (RHR). A three (groups: OT, TT, CG) by two (time: pre, post) ANOVA for repeated measures was used to analyze the exercise-specific effects. In case of significant group-by-time interactions, Bonferroni adjusted paired (within-group) and independent (between-group comparisons at post) t-tests were used for post-hoc analyses. Significant group-by-time interactions were found for all dependent variables (p < 0.001 - 0.002, eta(2)(p) = 0.16 - 0.78). Group-specific post-hoc tests showed improvements for all variables after OT (p < 0.001, Hedges'g effect size [g] = 0.05 - 1.94) and TT (p < 0.001, g = 0.04 - 2.73), but not in the CG (p = 0.058 - 1.000, g = 0.00 - 0.34). Compared to CG, OT showed larger SLJ (p = 0.001), cardiorespiratory fitness (p = 0.004), FVC (p = 0.008), and RHR (p < 0.001) improvements. TT showed larger improvements in SLJ (p = 0.036), cardiorespiratory fitness (p < 0.001), and RHR (p < 0.001) compared with CG. Compared to OT, TT showed larger improvements for SLJ (p = 0.018). In conclusion, sand-based PJT combined with either OT or TT similarly improved most measures of physical fitness, with greater SLJ improvement after TT. Coaches may use both concurrent exercise regimes based on preferences and logistical constrains (e.g., weather; access to treadmill equipment).}, language = {en} } @article{JafarnezhadgeroPiranHamlabadiSajedietal.2022, author = {Jafarnezhadgero, Amir Ali and Piran Hamlabadi, Milad and Sajedi, Heidar and Granacher, Urs}, title = {Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls}, series = {Gait \& posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Societ{\`a} Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research}, volume = {91}, journal = {Gait \& posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Societ{\`a} Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2021.11.002}, pages = {260 -- 265}, year = {2022}, abstract = {Background: Social isolation through quarantine represents an effective means to prevent COVID-19 infection. A negative side-effect of quarantine is low physical activity. Research question: What are the differences of running kinetics and muscle activities of recreational runners with a history of COVID-19 versus healthy controls? Methods: Forty men and women aged 20-30 years participated in this study and were divided into two experimental groups. Group 1 (age: 24.1 +/- 2.9) consisted of participants with a history of COVID-19 (COVID group) and group 2 (age: 24.2 +/- 2.7) of healthy age and sex-matched controls (controls). Both groups were tested for their running kinetics using a force plate and electromyographic activities (i.e., tibialis anterior [TA], gastrocnemius medialis [Gas-M], biceps femoris [BF], semitendinosus [ST], vastus lateralis [VL], vastus medialis [VM], rectus femoris [RF], gluteus medius [Glut-M]). Results: Results demonstrated higher peak vertical (p = 0.029; d=0.788) and medial (p = 0.004; d=1.119) ground reaction forces (GRFs) during push-off in COVID individuals compared with controls. Moreover, higher peak lateral GRFs were found during heel contact (p = 0.001; d=1.536) in the COVID group. COVID-19 individuals showed a shorter time-to-reach the peak vertical (p = 0.001; d=3.779) and posterior GRFs (p = 0.005; d=1.099) during heel contact. Moreover, the COVID group showed higher Gas-M (p = 0.007; d=1.109) and lower VM activity (p = 0.026; d=0.811) at heel contact. Significance: Different running kinetics and muscle activities were found in COVID-19 individuals versus healthy controls. Therefore, practitioners and therapists are advised to implement balance and/or strength training to improve lower limbs alignment and mediolateral control during dynamic movements in runners who recovered from COVID-19.}, language = {en} } @article{WickKriemlerGranacher2022, author = {Wick, Kristin and Kriemler, Susi and Granacher, Urs}, title = {Associations between measures of physical fitness and cognitive performance in preschool children}, series = {BMC sports science, medicine \& rehabilitation}, volume = {14}, journal = {BMC sports science, medicine \& rehabilitation}, number = {1}, publisher = {BMC}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-022-00470-w}, pages = {8}, year = {2022}, abstract = {Background: Given that recent studies report negative secular declines in physical fitness, associations between fitness and cognition in childhood are strongly discussed. The preschool age is characterized by high neuroplasticity which effects motor skill learning, physical fitness, and cognitive development. The aim of this study was to assess the relation of physical fitness and attention (including its individual dimensions (quantitative, qualitative)) as one domain of cognitive performance in preschool children. We hypothesized that fitness components which need precise coordination compared to simple fitness components are stronger related to attention. Methods: Physical fitness components like static balance (i.e., single-leg stance), muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), and coordination (i.e., hopping on one leg) were assessed in 61 healthy children (mean age 4.5 +/- 0.6 years; girls n = 30). Attention was measured with the "Konzentrations-Handlungsverfahren fur Vorschulkinder" [concentration-action procedure for preschoolers]). Analyses were adjusted for age, body height, and body mass. Results: Results from single linear regression analysis revealed a significant (p < 0.05) association between physical fitness (composite score) and attention (composite score) (standardized ss = 0.40), showing a small to medium effect (F-2 = 0.14). Further, coordination had a significant relation with the composite score and the quantitative dimension of attention (standardized ss = 0.35; p < 0.01; standardized ss = - 0.33; p < 0.05). Coordination explained about 11\% (composite score) and 9\% (quantitative dimension) of the variance in the stepwise multiple regression model. Conclusion: The results indicate that performance in physical fitness, particularly coordination, is related to attention in preschool children. Thus, high performance in complex fitness components (i.e., hopping on one leg) tends to predict attention in preschool children. Further longitudinal studies should focus on the effectiveness of physical activity programs implementing coordination and complex exercises at preschool age to examine cause-effect relationships between physical fitness and attention precisely.}, language = {en} } @article{ZghalColsonBlainetal.2019, author = {Zghal, Firas and Colson, Serge S. and Blain, Gr{\´e}gory and Behm, David George and Granacher, Urs and Chaouachi, Anis}, title = {Combined Resistance and Plyometric Training Is More Effective Than Plyometric Training Alone for Improving Physical Fitness of Pubertal Soccer Players}, series = {frontiers in Physiology}, volume = {10}, journal = {frontiers in Physiology}, number = {August 2019}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01026}, pages = {11}, year = {2019}, abstract = {The purpose of this study was to compare the effects of combined resistance and plyometric/sprint training with plyometric/sprint training or typical soccer training alone on muscle strength and power, speed, change-of-direction ability in young soccer players. Thirty-one young (14.5 ± 0.52 years; tanner stage 3-4) soccer players were randomly assigned to either a combined- (COMB, n = 14), plyometric-training (PLYO, n = 9) or an active control group (CONT, n = 8). Two training sessions were added to the regular soccer training consisting of one session of light-load high-velocity resistance exercises combined with one session of plyometric/sprint training (COMB), two sessions of plyometric/sprint training (PLYO) or two soccer training sessions (CONT). Training volume was similar between the experimental groups. Before and after 7-weeks of training, peak torque, as well as absolute and relative (normalized to torque; RTDr) rate of torque development (RTD) during maximal voluntary isometric contraction of the knee extensors (KE) were monitored at time intervals from the onset of contraction to 200 ms. Jump height, sprinting speed at 5, 10, 20-m and change-of-direction ability performances were also assessed. There were no significant between-group baseline differences. Both COMB and PLYO significantly increased their jump height (Δ14.3\%; ES = 0.94; Δ12.1\%; ES = 0.54, respectively) and RTD at mid to late phases but with greater within effect sizes in COMB in comparison with PLYO. However, significant increases in peak torque (Δ16.9\%; p < 0.001; ES = 0.58), RTD (Δ44.3\%; ES = 0.71), RTDr (Δ27.3\%; ES = 0.62) and sprint performance at 5-m (Δ-4.7\%; p < 0.001; ES = 0.73) were found in COMB without any significant pre-to-post change in PLYO and CONT groups. Our results suggest that COMB is more effective than PLYO or CONT for enhancing strength, sprint and jump performances.}, language = {en} } @article{BouamraZouhalRateletal.2022, author = {Bouamra, Marwa and Zouhal, Hassane and Ratel, S{\´e}bastien and Makhlouf, Issam and Bezrati, Ikram and Chtara, Moktar and Behm, David George and Granacher, Urs and Chaouachi, Anis}, title = {Concurrent Training Promotes Greater Gains on Body Composition and Components of Physical Fitness Than Single-Mode Training (Endurance or Resistance) in Youth With Obesity}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2022.869063}, pages = {1 -- 16}, year = {2022}, abstract = {The prevalence of obesity in the pediatric population has become a major public health issue. Indeed, the dramatic increase of this epidemic causes multiple and harmful consequences, Physical activity, particularly physical exercise, remains to be the cornerstone of interventions against childhood obesity. Given the conflicting findings with reference to the relevant literature addressing the effects of exercise on adiposity and physical fitness outcomes in obese children and adolescents, the effect of duration-matched concurrent training (CT) [50\% resistance (RT) and 50\% high-intensity-interval-training (HIIT)] on body composition and physical fitness in obese youth remains to be elucidated. Thus, the purpose of this study was to examine the effects of 9-weeks of CT compared to RT or HIIT alone, on body composition and selected physical fitness components in healthy sedentary obese youth. Out of 73 participants, only 37; [14 males and 23 females; age 13.4 ± 0.9 years; body-mass-index (BMI): 31.2 ± 4.8 kg·m-2] were eligible and randomized into three groups: HIIT (n = 12): 3-4 sets×12 runs at 80-110\% peak velocity, with 10-s passive recovery between bouts; RT (n = 12): 6 exercises; 3-4 sets × 10 repetition maximum (RM) and CT (n = 13): 50\% serial completion of RT and HIIT. CT promoted significant greater gains compared to HIIT and RT on body composition (p < 0.01, d = large), 6-min-walking test distance (6 MWT-distance) and on 6 MWT-VO2max (p < 0.03, d = large). In addition, CT showed substantially greater improvements than HIIT in the medicine ball throw test (20.2 vs. 13.6\%, p < 0.04, d = large). On the other hand, RT exhibited significantly greater gains in relative hand grip strength (p < 0.03, d = large) and CMJ (p < 0.01, d = large) than HIIT and CT. CT promoted greater benefits for fat, body mass loss and cardiorespiratory fitness than HIIT or RT modalities. This study provides important information for practitioners and therapists on the application of effective exercise regimes with obese youth to induce significant and beneficial body composition changes. The applied CT program and the respective programming parameters in terms of exercise intensity and volume can be used by practitioners as an effective exercise treatment to fight the pandemic overweight and obesity in youth.}, language = {en} } @article{GolleGranacherHoffmannetal.2014, author = {Golle, Kathleen and Granacher, Urs and Hoffmann, Martin and Wick, Ditmar and M{\"u}hlbauer, Thomas}, title = {Effect of living area and sports club participation on physical fitness in children: a 4 year longitudinal study}, series = {BMC public health}, volume = {14}, journal = {BMC public health}, publisher = {BioMed Central}, address = {London}, issn = {1471-2458}, doi = {10.1186/1471-2458-14-499}, pages = {8}, year = {2014}, abstract = {Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas.}, language = {en} } @article{PrieskeWickGranacher2014, author = {Prieske, Olaf and Wick, Ditmar and Granacher, Urs}, title = {Intrasession and intersession reliability in maximal and explosive isometric torque production of the elbow flexors}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {28}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {6}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, pages = {1771 -- 1777}, year = {2014}, abstract = {The purpose of this study was to assess intrasession and intersession reliability of maximal and explosive isometric torque production of the elbow flexors and its respective neuromuscular activation pattern. Subjects (13 men, age: 24.8 +/- 3.1 years, height: 1.9 +/- 0.1 m, body mass: 83.7 +/- 12.7 kg; and 6 women, age: 26.5 +/- 1.4 years, height: 1.7 +/- 0.1 m, body mass: 62.7 +/- 7.0 kg) were tested and retested 2-7 days later performing unilateral maximal isometric elbow flexions. Absolute (coefficient of variation[CV], test-retest variability[TRV], Bland-Altman plots with 95\% limits of agreement) and relative reliability statistics (intraclass correlation coefficient) were calculated for various mechanical (i.e., maximal isometric torque, rate of torque development, impulse) and electromyographical measures (i.e., mean average voltage) at different time intervals relative to onset of torque (i. e., 30, 50, 100, 200, 300, 400, 100-200 ms). Intraclass correlation coefficient values were >= 0.61 for all mechanical and electromyographical measures and time intervals indicating good to excellent intrasession and intersession reliability. BlandAltman plots confirmed these findings by showing that only 0-2 (<= 3.3\%) data points were beyond the limits of agreement. Regarding torque and electromyographic measures, CV (11.9-32.3\%) and TRV (18.4-53.8\%) values were high during the early intervals of torque development (<= 100 ms) indicating high variability. During the later intervals (>100 ms), lower CV (i. e., 5.0-29.9\%) and TRV values (i.e., 5.4-34.6\%) were observed indicating lower variability. The present study revealed that neuromuscular performance during explosive torque production of the elbow flexors is reproducible in time intervals >100 ms after onset of isometric actions, whereas during earlier time intervals variability is high.}, language = {en} } @article{MeyerErnstSchottetal.2015, author = {Meyer, Ursina and Ernst, Dominique and Schott, Silvia and Riera, Claudia and Hattendorf, Jan and Romkes, Jacqueline and Granacher, Urs and G{\"o}pfert, Beat and Kriemler, Susi}, title = {Validation of two accelerometers to determine mechanical loading of physical activities in children}, series = {Journal of sports sciences}, volume = {33}, journal = {Journal of sports sciences}, number = {16}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0264-0414}, doi = {10.1080/02640414.2015.1004638}, pages = {1702 -- 1709}, year = {2015}, abstract = {The purpose of this study was to assess the validity of accelerometers using force plates (i.e., ground reaction force (GRF)) during the performance of different tasks of daily physical activity in children. Thirteen children (10.1 (range 5.4-15.7)years, 3 girls) wore two accelerometers (ActiGraph GT3X+ (ACT), GENEA (GEN)) at the hip that provide raw acceleration signals at 100Hz. Participants completed different tasks (walking, jogging, running, landings from boxes of different height, rope skipping, dancing) on a force plate. GRF was collected for one step per trial (10 trials) for ambulatory movements and for all landings (10 trials), rope skips and dance procedures. Accelerometer outputs as peak loading (g) per activity were averaged. ANOVA, correlation analyses and Bland-Altman plots were computed to determine validity of accelerometers using GRF. There was a main effect of task with increasing acceleration values in tasks with increasing locomotion speed and landing height (P<0.001). Data from ACT and GEN correlated with GRF (r=0.90 and 0.89, respectively) and between each other (r=0.98), but both accelerometers consistently overestimated GRF. The new generation of accelerometer models that allow raw signal detection are reasonably accurate to measure impact loading of bone in children, although they systematically overestimate GRF.}, language = {en} } @article{MuehlbauerMettlerRothetal.2014, author = {M{\"u}hlbauer, Thomas and Mettler, Claude and Roth, Ralf and Granacher, Urs}, title = {One-leg standing performance and muscle activity: Are there limb differences?}, series = {Journal of applied biomechanics}, volume = {30}, journal = {Journal of applied biomechanics}, number = {3}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1065-8483}, doi = {10.1123/jab.2013-0230}, pages = {407 -- 414}, year = {2014}, abstract = {The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 +/- 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P < .001, effect size [ES] = .57-2.54) and increased muscle activity (P < .001, ES = .50-1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P > .05, ES = .06-.22) and electromyographic (P > .05, ES = .03-.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults.}, language = {en} } @article{GolleMuehlbauerWicketal.2015, author = {Golle, Kathleen and M{\"u}hlbauer, Thomas and Wick, Ditmar and Granacher, Urs}, title = {Physical Fitness Percentiles of German Children Aged 9-12 Years: Findings from a Longitudinal Study}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0142393}, pages = {17}, year = {2015}, abstract = {Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i. e., low or high fitness level) to set appropriate fitness goals (i. e., fitness/ health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9-12 years and to compute sex-and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i. e., speed), the 1-kg ball push test, the triple hop test (i. e., upper-and lower-extremity muscular power), the stand-and-reach test (i. e., flexibility), the star run test (i. e., agility), and the 9-min run test (i. e., endurance). Age-and sex-specific percentile values (i. e., P-10 to P-90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age-and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen's d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40-1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10-11 yrs; girls: 9-11 yrs), agility (boys: 9-10 yrs; girls: 9-11 yrs), and endurance (boys: 9-10 yrs; girls: 9-10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407-1,507 m, 1,479-1,597 m, 1,423-1,654 m, and 1,433-1,666 m in 9-to 12-year-old boys and 1,262-1,362 m, 1,329-1,434 m, 1,392-1,501 m, and 1,415-1,526 m in 9-to 12-year-old girls correspond to a "medium" fitness level (i. e., P-40 to P-60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e. g., lower-extremity muscular power) and curvilinear (e. g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age-and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/ grading of children's motor performance.}, language = {en} } @article{BeurskensGollhoferMuehlbaueretal.2015, author = {Beurskens, Rainer and Gollhofer, Albert and M{\"u}hlbauer, Thomas and Cardinale, Marco and Granacher, Urs}, title = {Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {2}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0118535}, pages = {13}, year = {2015}, abstract = {The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80\% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults.}, language = {en} } @article{HowardGranacherBehm2015, author = {Howard, Joshua and Granacher, Urs and Behm, David George}, title = {Trunk extensor fatigue decreases jump height similarly under stable and unstable conditions with experienced jumpers}, series = {European journal of applied physiology}, volume = {115}, journal = {European journal of applied physiology}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-014-3011-x}, pages = {285 -- 294}, year = {2015}, abstract = {The purpose of this study was to investigate the effects of back extensor fatigue on performance measures and electromyographic (EMG) activity of leg and trunk muscles during jumping on stable and unstable surfaces. Before and after a modified Biering-Sorensen fatigue protocol for the back extensors, countermovement (CMJ) and lateral jumps (LJ) were performed on a force plate under stable and unstable (balance pad on the force plate) conditions. Performance measures for LJ (contact time) and CMJ height and leg and trunk muscles EMG activity were tested in 14 male experienced jumpers during 2 time intervals for CMJ (braking phase, push-off phase) and 5 intervals for LJ (-30 to 0, 0-30, 30-60, 60-90, and 90-120 ms) in non-fatigued and fatigued conditions. A significant main effect of test (fatigue) (p = 0.007, f = 0.57) was observed for CMJ height. EMG analysis showed a significant fatigue-induced decrease in biceps femoris and gastrocnemius activity with CMJ (p = 0.008, f = 0.58 andp = 0.04, f = 0.422, respectively). LJ contact time was not affected by fatigue or surface interaction. EMG activity was significantly lower in the tibialis anterior with LJ following fatigue (p = 0.05, f = 0.405). A test x surface (p = 0.04, f = 0.438) interaction revealed that the non-fatigued unstable CMJ gastrocnemius EMG activity was lower than the non-fatigued stable condition during the onset-of-force phase. The findings revealed that fatiguing the trunk negatively impacts CMJ height and muscle activity during the performance of CMJs. However, skilled jumpers are not additionally affected by a moderately unstable surface as compared to a stable surface.}, language = {en} } @article{PrieskeMuehlbauerKruegeretal.2015, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Kibele, A. and Behm, David George and Granacher, Urs}, title = {Sex-Specific effects of surface instability on drop jump and landing biomechanics}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0034-1384549}, pages = {75 -- 81}, year = {2015}, abstract = {This study investigated sex-specific effects of surface instability on kinetics and lower extremity kinematics during drop jumping and landing. Ground reaction forces as well as knee valgus and flexion angles were tested in 14 males (age: 23 +/- 2 years) and 14 females (age: 24 +/- 3 years) when jumping and landing on stable and unstable surfaces. Jump height was found to be significantly lower (9 \%, p < 0.001) when drop jumps were performed on unstable vs. stable surface. Significantly higher peak ground reaction forces were observed when jumping was performed on unstable vs. stable surfaces (5 \%, p = 0.022). Regarding frontal plane kinematics during jumping and landing, knee valgus angles were higher on unstable compared to stable surfaces (1932 \%, p < 0.05). Additionally, at the onset of ground contact during landings, females showed higher knee valgus angles than males (222 \%, p = 0.027). Sagittal plane kinematics indicated significantly smaller knee flexion angles (6-35 \%, p < 0.05) when jumping and landing on unstable vs. stable surfaces. During drop jumps and landings, women showed smaller knee flexion angles at ground contact compared to men (27-33 \%, p < 0.05). These findings imply that knee motion strategies were modified by surface instability and sex during drop jumps and landings.}, language = {en} } @article{SammoudNegraBouguezzietal.2021, author = {Sammoud, Senda and Negra, Yassine and Bouguezzi, Raja and Hachana, Younes and Granacher, Urs and Chaabene, Helmi}, title = {The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers}, series = {Journal of exercise science and fitness : JESF : official journal of The Society of Chinese Scholars on Exercise Physiology and Fitness and Hong Kong Association of Sports Medicine \& Sports Science}, volume = {19}, journal = {Journal of exercise science and fitness : JESF : official journal of The Society of Chinese Scholars on Exercise Physiology and Fitness and Hong Kong Association of Sports Medicine \& Sports Science}, number = {1}, publisher = {Elsevier}, address = {Singapore}, issn = {1728-869x}, doi = {10.1016/j.jesf.2020.07.003}, pages = {25 -- 31}, year = {2021}, abstract = {Background/objective Dry land-training (e.g., plyometric jump training) can be a useful mean to improve swimming performance. This study examined the effects of an 8-week plyometric jump training (PJT) program on jump and sport-specific performances in prepubertal female swimmers. Methods Twenty-two girls were randomly assigned to either a plyometric jump training group (PJTG; n = 12, age: 10.01 ± 0.57 years, maturity-offset = -1.50 ± 0.50, body mass = 36.39 ± 6.32 kg, body height = 146.90 ± 7.62 cm, body mass index = 16.50 ± 1.73 kg/m2) or an active control (CG; n = 10, age: 10.50 ± 0.28 years, maturity-offset = -1.34 ± 0.51, body mass = 38.41 ± 9.42 kg, body height = 143.60 ± 5.05 cm, body mass index = 18.48 ± 3.77 kg/m2). Pre- and post-training, tests were conducted for the assessment of muscle power (e.g., countermovement-jump [CMJ], standing-long-jump [SLJ]). Sport-specific-performances were tested using the timed 25 and 50-m front crawl with a diving-start, timed 25-m front crawl without push-off from the wall (25-m WP), and a timed 25-m kick without push-off from the wall (25-m KWP). Results Findings showed a significant main effect of time for the CMJ (d = 0.78), the SLJ (d = 0.91), 25-m front crawl test (d = 2.5), and the 25-m-KWP (d = 1.38) test. Significant group × time interactions were found for CMJ, SLJ, 25-m front crawl, 50-m front crawl, 25-m KWP, and 25-m WP test (d = 0.29-1.63) in favor of PJTG (d = 1.34-3.50). No significant pre-post changes were found for CG (p > 0.05). Conclusion In sum, PJT is effective in improving muscle power and sport-specific performances in prepubertal swimmers. Therefore, PJT should be included from an early start into the regular training program of swimmers.}, language = {en} } @article{RaveGranacherBoullosaetal.2020, author = {Rav{\´e}, Guillaume and Granacher, Urs and Boullosa, Daniel and Hackney, Anthony C. and Zouhal, Hassane}, title = {How to Use Global Positioning Systems (GPS) Data to Monitor Training Load in the "Real World" of Elite Soccer}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00944}, pages = {11}, year = {2020}, language = {en} } @article{HammamiChaabeneKharratetal.2021, author = {Hammami, Raouf and Chaabene, Helmi and Kharrat, Fatma and Werfelli, Hanen and Duncan, Michael and Rebai, Haithem and Granacher, Urs}, title = {Acute effects of different balance exercise types on selected measures of physical fitness in youth female volleyball players}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {13}, journal = {BMC Sports Science, Medicine and Rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {1758-2555}, doi = {10.1186/s13102-021-00249-5}, pages = {8}, year = {2021}, abstract = {Background Earlier studies have shown that balance training (BT) has the potential to induce performance enhancements in selected components of physical fitness (i.e., balance, muscle strength, power, speed). While there is ample evidence on the long-term effects of BT on components of physical fitness in youth, less is known on the short-term or acute effects of single BT sessions on selected measures of physical fitness. Objective To examine the acute effects of different balance exercise types on balance, change-of-direction (CoD) speed, and jump performance in youth female volleyball players. Methods Eleven female players aged 14 years participated in this study. Three types of balance exercises (i.e., anterior, posterolateral, rotational type) were conducted in randomized order. For each exercise, 3 sets including 5 repetitions were performed. Before and after the performance of the balance exercises, participants were tested for their static balance (center of pressure surface area [CoP SA] and velocity [CoP V]) on foam and firm surfaces, CoD speed (T-Half test), and vertical jump height (countermovement jump [CMJ] height). A 3 (condition: anterior, mediolateral, rotational balance exercise type) × 2 (time: pre, post) analysis of variance was computed with repeated measures on time. Results Findings showed no significant condition × time interactions for all outcome measures (p > 0.05). However, there were small main effects of time for CoP SA on firm and foam surfaces (both d = 0.38; all p < 0.05) with no effect for CoP V on both surface conditions (p > 0.05). For CoD speed, findings showed a large main effect of time (d = 0.91; p < 0.001). However, for CMJ height, no main effect of time was observed (p > 0.05). Conclusions Overall, our results indicated small-to-large changes in balance and CoD speed performances but not in CMJ height in youth female volleyball players, regardless of the balance exercise type. Accordingly, it is recommended to regularly integrate balance exercises before the performance of sport-specific training to optimize performance development in youth female volleyball players.}, language = {en} } @misc{RamirezCampilloAlvarezGarciaHermosoetal.2018, author = {Ramirez-Campillo, Rodrigo and Alvarez, Cristian and Garcia-Hermoso, Antonio and Ramirez-Velez, Robinson and Gentil, Paulo and Asadi, Abbas and Chaabene, Helmi and Moran, Jason and Meylan, Cesar and Garcia-de-Alcaraz, Antonio and Sanchez-Sanchez, Javier and Nakamura, Fabio Y. and Granacher, Urs and Kraemer, William and Izquierdo, Mikel}, title = {Methodological characteristics and future directions for plyometric jump training research}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {5}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0870-z}, pages = {1059 -- 1081}, year = {2018}, abstract = {Recently, there has been a proliferation of published articles on the effect of plyometric jump training, including several review articles and meta-analyses. However, these types of research articles are generally of narrow scope. Furthermore, methodological limitations among studies (e.g., a lack of active/passive control groups) prevent the generalization of results, and these factors need to be addressed by researchers. On that basis, the aims of this scoping review were to (1) characterize the main elements of plyometric jump training studies (e.g., training protocols) and (2) provide future directions for research. From 648 potentially relevant articles, 242 were eligible for inclusion in this review. The main issues identified related to an insufficient number of studies conducted in females, youths, and individual sports (~ 24.0, ~ 37.0, and ~ 12.0\% of overall studies, respectively); insufficient reporting of effect size values and training prescription (~ 34.0 and ~ 55.0\% of overall studies, respectively); and studies missing an active/passive control group and randomization (~ 40.0 and ~ 20.0\% of overall studies, respectively). Furthermore, plyometric jump training was often combined with other training methods and added to participants' daily training routines (~ 47.0 and ~ 39.0\% of overall studies, respectively), thus distorting conclusions on its independent effects. Additionally, most studies lasted no longer than 7 weeks. In future, researchers are advised to conduct plyometric training studies of high methodological quality (e.g., randomized controlled trials). More research is needed in females, youth, and individual sports. Finally, the identification of specific dose-response relationships following plyometric training is needed to specifically tailor intervention programs, particularly in the long term.}, language = {en} } @article{FernandezFernandezGranacherMartinezMartinetal.2022, author = {Fernandez-Fernandez, Jaime and Granacher, Urs and Martinez-Martin, Isidoro and Garcia-Tormo, Jos{\´e} Vicente and Herrero-Molleda, Alba and Barbado, David and Garc{\´i}a L{\´o}pez, Juan}, title = {Physical fitness and throwing speed in U13 versus U15 male handball players}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {14}, journal = {BMC Sports Science, Medicine and Rehabilitation}, publisher = {Springer}, address = {London}, issn = {1758-2555}, doi = {10.1186/s13102-022-00507-0}, pages = {13}, year = {2022}, abstract = {Background The aim of this study was to analyze the shoulder functional profile (rotation range of motion [ROM] and strength), upper and lower body performance, and throwing speed of U13 versus U15 male handball players, and to establish the relationship between these measures of physical fitness and throwing speed. Methods One-hundred and nineteen young male handball players (under (U)-13 (U13) [n = 85]) and U15 [n = 34]) volunteered to participate in this study. The participating athletes had a mean background of sytematic handball training of 5.5 ± 2.8 years and they exercised on average 540 ± 10.1 min per week including sport-specific team handball training and strength and conditioning programs. Players were tested for passive shoulder range-of-motion (ROM) for both internal (IR) and external rotation (ER) and isometric strength (i.e., IR and ER) of the dominant/non-dominant shoulders, overhead medicine ball throw (OMB), hip isometric abductor (ABD) and adductor (ADD) strength, hip ROM, jumps (countermovement jump [CMJ] and triple leg-hop [3H] for distance), linear sprint test, modified 505 change-of-direction (COD) test and handball throwing speed (7 m [HT7] and 9 m [HT9]). Results U15 players outperformed U13 in upper (i.e., HT7 and HT9 speed, OMB, absolute IR and ER strength of the dominant and non-dominant sides; Cohen's d: 0.76-2.13) and lower body (i.e., CMJ, 3H, 20-m sprint and COD, hip ABD and ADD; d: 0.70-2.33) performance measures. Regarding shoulder ROM outcomes, a lower IR ROM was found of the dominant side in the U15 group compared to the U13 and a higher ER ROM on both sides in U15 (d: 0.76-1.04). It seems that primarily anthropometric characteristics (i.e., body height, body mass) and upper body strength/power (OMB distance) are the most important factors that explain the throw speed variance in male handball players, particularly in U13. Conclusions Findings from this study imply that regular performance monitoring is important for performance development and for minimizing injury risk of the shoulder in both age categories of young male handball players. Besides measures of physical fitness, anthropometric data should be recorded because handball throwing performance is related to these measures.}, language = {en} } @article{PrieskeDalagerLooksetal.2021, author = {Prieske, Olaf and Dalager, Tina and Looks, Vanessa and Golle, Kathleen and Granacher, Urs}, title = {Physical fitness and psycho-cognitive performance in the young and middle-aged workforce with primarily physical versus mental work demands}, series = {Journal of public health : from theory to practice : official organ of the Deutscher Verband f{\"u}r Gesundheitswissenschaften Public Health e.V. (DVGPH)}, volume = {29}, journal = {Journal of public health : from theory to practice : official organ of the Deutscher Verband f{\"u}r Gesundheitswissenschaften Public Health e.V. (DVGPH)}, number = {1}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {2198-1833}, doi = {10.1007/s10389-019-01099-9}, pages = {75 -- 84}, year = {2021}, abstract = {Aim The purpose of this study was to examine physical fitness and psycho-cognitive performance and their associations in young and middle-aged workers with primarily physical versus mental work demands. Subjects and methods Healthy young and middle-aged workers (73 men, age = 33 +/- 7 years; 75 women, age = 35 +/- 9 years) were recruited from German small-to-medium-sized enterprises (< 250 employees) and classified into groups with primarily mental (MD) or physical demands (PD) at work. Participants were tested for cardiorespiratory fitness, trunk flexor/extensor muscular endurance, handgrip strength, balance, leg muscle power, perceived stress, cognitive performance, and work ability. Results Ninety-four workers were allocated to the MD (53\% females) and 54 to the PD (46\% females) groups. The MD group showed significantly better balance, trunk extensor muscular endurance, and cognitive performance (p < 0.035, 0.35 <= d <= 0.55) and less stress compared with the PD group (p < 0.023, d = 0.38). Group-specific Spearman rank correlation analysis (r(S)) revealed significant small-to-medium-sized correlations between physical fitness and cognitive performance (- 0.205 <= r(S) <= 0.434) in the MD and PD groups. Significant small-to-medium-sized correlations were found for physical fitness and stress/work ability (0.211 <= r(S) <= 0.301) in the MD group only. Further, associations of trunk extensor muscular endurance and work ability were significantly higher in the MD group (r(S) = 0.240) compared with the PD group (r(S) = - 0.141; z = 2.16, p = 0.031). Conclusions MD workers showed better physical fitness measures (balance, trunk extensor muscular endurance) and cognitive performance and lower levels of perceived stress compared with PD workers. Small-to-medium-sized associations between physical fitness and psycho-cognitive performance measures indicate that gains in physical fitness may at least partly contribute to psycho-cognitive performance and/or vice versa, particularly in MD workers.}, language = {en} } @misc{HortobagyiLesinskiGaebleretal.2015, author = {Hortob{\´a}gyi, Tibor and Lesinski, Melanie and G{\"a}bler, Martijn and VanSwearingen, Jessie M. and Malatesta, Davide and Granacher, Urs}, title = {Effects of three types of exercise interventions on healthy old adults' gait speed}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-43115}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431150}, pages = {17}, year = {2015}, abstract = {Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 \% (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 \%; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 \%; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 \%, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset.}, language = {en} } @misc{HortobagyiLesinskiFernandez‐del‐Olmoetal.2015, author = {Hortob{\´a}gyi, Tibor and Lesinski, Melanie and Fernandez-del-Olmo, Miguel and Granacher, Urs}, title = {Small and inconsistent effects of whole body vibration on athletic performance}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {627}, issn = {1866-8364}, doi = {10.25932/publishup-43199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431993}, pages = {23}, year = {2015}, abstract = {Purpose We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Methods Systematic literature review and meta-analysis. Results Whole body vibration combined with exercise had an overall 0.3 \% acute effect on maximal voluntary leg force (-6.4 \%, effect size = -0.43, 1 study), leg power (4.7 \%, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 \%, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 \%, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 \% chronic effect on maximal voluntary leg force (14.6 \%, weighted mean effect size = 0.44, 5 studies), leg power (10.7 \%, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 \%, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 \%, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Conclusions Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance.}, language = {en} } @article{MuehlbauerGranacherBordeetal.2017, author = {Muehlbauer, Thomas and Granacher, Urs and Borde, Ron and Hortobagyi, Tibor}, title = {Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults}, series = {Gerontology}, volume = {64}, journal = {Gerontology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000480150}, pages = {11 -- 18}, year = {2017}, abstract = {Background: Gait speed declines with increasing age, but it is unclear if gait speed preferentially correlates with leg muscle strength or mass. Objective: We determined the relationship between gait speed and (1) leg muscle strength measured at 3 lower extremity joints and (2) leg lean tissue mass (LTM) in healthy young (age: 25 years, n = 20) and old (age: 70 years, n = 20) adults. Methods: Subjects were tested for maximal isokinetic hip, knee, and ankle extension torque, leg LTM by bioimpedance, and gait performance (i.e., gait speed, stride length) at preferred and maximal gait speeds. Results: We found no evidence for a preferential relationship between gait performance and leg muscle strength compared with gait performance and leg LTM in healthy young and old adults. In old adults, hip extensor strength only predicted habitual gait speed (R-2 = 0.29, p = 0.015), whereas ankle plantarflexion strength only predicted maximal gait speed and stride length (both R-2 = 0.40, p = 0.003). Conclusions: Gait speed did not preferentially correlate with leg muscle strength or leg LTM, favoring neither outcome for predicting mobility. Thus, we recommend that both leg muscle strength and leg LTM should be tested and trained complementarily. Further, hip and ankle extension torque predicted gait performance, and thus we recommend to test and train healthy old adults by functional integrated multiarticular rather than monoarticular lower extremity strength exercises.}, language = {en} } @article{BrahmsHortobagyiKressigetal.2021, author = {Brahms, Clemens Markus and Hortob{\´a}gyi, Tibor and Kressig, Reto W. and Granacher, Urs}, title = {The Interaction between mobility status and exercise specificity in older adults}, series = {Exercise and sport sciences reviews}, volume = {49}, journal = {Exercise and sport sciences reviews}, number = {1}, publisher = {Lippincott Williams \& Wilkins}, address = {Hagerstown, Md.}, issn = {0091-6331}, doi = {10.1249/JES.0000000000000237}, pages = {15 -- 22}, year = {2021}, abstract = {Many adults older than 60 yr experience mobility limitations. Although physical exercise improves older adults' mobility, differences in baseline mobility produce large variations in individual responses to interventions, and these responses could further vary by the type and dose of exercise. Here, we propose an exercise prescription model for older adults based on their current mobility status.}, language = {en} } @article{HortobagyiVetrovskyBalbimetal.2022, author = {Hortob{\´a}gyi, Tibor and Vetrovsky, Tomas and Balbim, Guilherme Moraes and Sorte Silva, Narlon Cassio Boa and Manca, Andrea and Deriu, Franca and Kolmos, Mia and Kruuse, Christina and Liu-Ambrose, Teresa and Radak, Zsolt and Vaczi, Mark and Johansson, Hanna and Rocha dos Santos, Paulo Cezar and Franzen, Erika and Granacher, Urs}, title = {The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease}, series = {Ageing research reviews : ARR}, volume = {80}, journal = {Ageing research reviews : ARR}, publisher = {Elsevier}, address = {Clare}, issn = {1568-1637}, doi = {10.1016/j.arr.2022.101698}, pages = {18}, year = {2022}, abstract = {Objective: To determine the effects of low- vs. high-intensity aerobic and resistance training on motor and cognitive function, brain activation, brain structure, and neurochemical markers of neuroplasticity and the association thereof in healthy young and older adults and in patients with multiple sclerosis, Parkinson's disease, and stroke. Design: Systematic review and robust variance estimation meta-analysis with meta-regression. Data sources: Systematic search of MEDLINE, Web of Science, and CINAHL databases. Results: Fifty studies with 60 intervention arms and 2283 in-analyses participants were included. Due to the low number of studies, the three patient groups were combined and analyzed as a single group. Overall, low- (g=0.19, p = 0.024) and high-intensity exercise (g=0.40, p = 0.001) improved neuroplasticity. Exercise intensity scaled with neuroplasticity only in healthy young adults but not in healthy older adults or patient groups. Exercise-induced improvements in neuroplasticity were associated with changes in motor but not cognitive outcomes. Conclusion: Exercise intensity is an important variable to dose and individualize the exercise stimulus for healthy young individuals but not necessarily for healthy older adults and neurological patients. This conclusion warrants caution because studies are needed that directly compare the effects of low- vs. high-intensity exercise on neuroplasticity to determine if such changes are mechanistically and incrementally linked to improved cognition and motor function.}, language = {en} } @misc{LacroixHortobagyiBeurskensetal.2017, author = {Lacroix, Andre and Hortobagyi, Tibor and Beurskens, Rainer and Granacher, Urs}, title = {Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults: A Systematic Review and Meta-Analysis}, series = {Sports medicine}, volume = {47}, journal = {Sports medicine}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-017-0747-6}, pages = {2341 -- 2361}, year = {2017}, abstract = {Objectives The objective of this systematic review and meta-analysis was to quantify the effectiveness of supervised vs. unsupervised balance and/or resistance training programs on measures of balance and muscle strength/ power in healthy older adults. In addition, the impact of supervision on training-induced adaptive processes was evaluated in the form of dose-response relationships by analyzing randomized controlled trials that compared supervised with unsupervised trials. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SportDiscus to detect articles examining the role of supervision in balance and/or resistance training in older adults. Study Eligibility Criteria The initially identified 6041 articles were systematically screened. Studies were included if they examined balance and/or resistance training in adults aged >= 65 years with no relevant diseases and registered at least one behavioral balance (e.g., time during single leg stance) and/or muscle strength/ power outcome (e.g., time for 5-Times-Chair-Rise-Test). Finally, 11 studies were eligible for inclusion in this meta-analysis. Study Appraisal Weighted mean standardized mean differences between subjects (SMDbs) of supervised vs. unsupervised balance/resistance training studies were calculated. The included studies were coded for the following variables: number of participants, sex, age, number and type of interventions, type of balance/strength tests, and change (\%) from pre- to post-intervention values. Additionally, we coded training according to the following modalities: period, frequency, volume, modalities of supervision (i.e., number of supervised/unsupervised sessions within the supervised or unsupervised training groups, respectively). Heterogeneity was computed using I 2 and chi(2) statistics. The methodological quality of the included studies was evaluated using the Physiotherapy Evidence Database scale. Results Our analyses revealed that in older adults, supervised balance/resistance training was superior compared with unsupervised balance/resistance training in improving measures of static steady-state balance (mean SMDbs = 0.28, p = 0.39), dynamic steady-state balance (mean SMDbs = 0.35, p = 0.02), proactive balance (mean SMDbs = 0.24, p = 0.05), balance test batteries (mean SMDbs = 0.53, p = 0.02), and measures of muscle strength/power (mean SMDbs = 0.51, p = 0.04). Regarding the examined dose-response relationships, our analyses showed that a number of 10-29 additional supervised sessions in the supervised training groups compared with the unsupervised training groups resulted in the largest effects for static steady-state balance (mean SMDbs = 0.35), dynamic steady-state balance (mean SMDbs = 0.37), and muscle strength/power (mean SMDbs = 1.12). Further, >= 30 additional supervised sessions in the supervised training groups were needed to produce the largest effects on proactive balance (mean SMDbs = 0.30) and balance test batteries (mean SMDbs = 0.77). Effects in favor of supervised programs were larger for studies that did not include any supervised sessions in their unsupervised programs (mean SMDbs: 0.28-1.24) compared with studies that implemented a few supervised sessions in their unsupervised programs (e.g., three supervised sessions throughout the entire intervention program; SMDbs: -0.06 to 0.41). Limitations The present findings have to be interpreted with caution because of the low number of eligible studies and the moderate methodological quality of the included studies, which is indicated by a median Physiotherapy Evidence Database scale score of 5. Furthermore, we indirectly compared dose-response relationships across studies and not from single controlled studies. Conclusions Our analyses suggest that supervised balance and/or resistance training improved measures of balance and muscle strength/power to a greater extent than unsupervised programs in older adults. Owing to the small number of available studies, we were unable to establish a clear dose-response relationship with regard to the impact of supervision. However, the positive effects of supervised training are particularly prominent when compared with completely unsupervised training programs. It is therefore recommended to include supervised sessions (i.e., two out of three sessions/week) in balance/resistance training programs to effectively improve balance and muscle strength/power in older adults.}, language = {en} } @article{PrieskeDalagerHerzetal.2019, author = {Prieske, Olaf and Dalager, Tina and Herz, Michael and Hortobagyi, Tibor and Sjogaard, Gisela and Sogaard, Karen and Granacher, Urs}, title = {Effects of Physical Exercise Training in the Workplace on Physical Fitness: A Systematic Review and Meta-analysis}, series = {Sports medicine}, volume = {49}, journal = {Sports medicine}, number = {12}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-019-01179-6}, pages = {1903 -- 1921}, year = {2019}, abstract = {Background There is evidence that physical exercise training (PET) conducted at the workplace is effective in improving physical fitness and thus health. However, there is no current systematic review available that provides high-level evidence regarding the effects of PET on physical fitness in the workforce. Objectives To quantify sex-, age-, and occupation type-specific effects of PET on physical fitness and to characterize dose-response relationships of PET modalities that could maximize gains in physical fitness in the working population. Data Sources A computerized systematic literature search was conducted in the databases PubMed and Cochrane Library (2000-2019) to identify articles related to PET in workers. Study Eligibility Criteria Only randomized controlled trials with a passive control group were included if they investigated the effects of PET programs in workers and tested at least one fitness measure. Study Appraisal and Synthesis Methods Weighted mean standardised mean differences (SMDwm) were calculated using random effects models. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (e.g., training frequency, session duration, intensity) on the effectiveness of PET on measures of physical fitness. Further, subgroup univariate analyses were computed for each training modality. Additionally, methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, 3423 workers aged 30-56 years participated in 17 studies (19 articles) that were eligible for inclusion. Methodological quality of the included studies was moderate with a median PEDro score of 6. Our analyses revealed significant, small-sized effects of PET on cardiorespiratory fitness (CRF), muscular endurance, and muscle power (0.29 <= SMDwm <= 0.48). Medium effects were found for CRF and muscular endurance in younger workers (<= 45 years) (SMDwm = 0.71) and white-collar workers (SMDwm = 0.60), respectively. Multivariate random effects meta-regression for CRF revealed that none of the examined training modalities predicted the effects of PET on CRF (R-2 = 0). Independently computed subgroup analyses showed significant PET effects on CRF when conducted for 9-12 weeks (SMDwm = 0.31) and for 17-20 weeks (SMDwm = 0.74). Conclusions PET effects on physical fitness in healthy workers are moderated by age (CRF) and occupation type (muscular endurance). Further, independently computed subgroup analyses indicated that the training period of the PET programs may play an important role in improving CRF in workers.}, language = {en} } @misc{HortobagyiLesinskiFernandezdelOlmoetal.2015, author = {Hortobagyi, Tibor and Lesinski, Melanie and Fernandez-del-Olmo, Miguel and Granacher, Urs}, title = {Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis}, series = {European journal of applied physiology}, volume = {115}, journal = {European journal of applied physiology}, number = {8}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-015-3194-9}, pages = {1605 -- 1625}, year = {2015}, abstract = {We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 \% acute effect on maximal voluntary leg force (-6.4 \%, effect size = -0.43, 1 study), leg power (4.7 \%, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 \%, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 \%, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 \% chronic effect on maximal voluntary leg force (14.6 \%, weighted mean effect size = 0.44, 5 studies), leg power (10.7 \%, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 \%, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 \%, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance.}, language = {en} } @article{JararnezhadgeroMamashliGranacher2021, author = {Jararnezhadgero, AmirAli and Mamashli, Elaheh and Granacher, Urs}, title = {An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.654755}, pages = {1 -- 15}, year = {2021}, abstract = {Background: The prevalence of diabetes worldwide is predicted to increase from 2.8\% in 2000 to 4.4\% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45-65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40-55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001-0.037; d = 0.56-1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001-0.044; d = 0.54-0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics.}, language = {en} } @article{PrieskeMuehlbauerMuelleretal.2013, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and M{\"u}ller, Steffen and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David George and Granacher, Urs}, title = {Effects of surface instability on neuromuscular performance during drop jumps and landings}, series = {European journal of applied physiology}, volume = {113}, journal = {European journal of applied physiology}, number = {12}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-013-2724-6}, pages = {2943 -- 2951}, year = {2013}, abstract = {The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 \%, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 \%, p = 0.022, f = 0.72), and time for braking phase (12 \%, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 \%, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 \%, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces.}, language = {en} } @article{AraziAsadiKhalkhalietal.2020, author = {Arazi, Hamid and Asadi, Abbas and Khalkhali, Farhood and Boullosa, Daniel and Hackney, Anthony C. and Granacher, Urs and Zouhal, Hassane}, title = {Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players}, volume = {11}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00608}, pages = {7}, year = {2020}, abstract = {This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r²) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52\%) compared with ACWRRA (ranging between 17 and 39\%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season.}, language = {en} } @article{AhmadiHeratAlizadehetal.2021, author = {Ahmadi, Hamid and Herat, Nehara and Alizadeh, Shahab and Button, Duane C. and Granacher, Urs and Behm, David G.}, title = {Effect of an inverted seated position with upper arm blood flow restriction on measures of elbow flexors neuromuscular performance}, series = {PLOS ONE / Public Library of Science}, volume = {16}, journal = {PLOS ONE / Public Library of Science}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0245311}, pages = {19}, year = {2021}, abstract = {Purpose The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses. Methods Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale. Results Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC (21.1\%, Z2p = 0.48, p = 0.02) and resting evoked twitch forces (29.4\%, Z2p = 0.34, p = 0.03). The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch force (Z2p = 0.61, p = 0.0009) during inversion (75\%) than upright (65.3\%) conditions. Overall, BFR decreased MVC force 4.8\% (Z2p = 0.37, p = 0.05). For upright position, BFR induced 21.0\% reductions in M-wave amplitude (Z2p = 0.44, p = 0.04). There were no significant differences for electromyographic activity or voluntary activation as measured with the interpolated twitch technique. For all conditions, there was a significant increase in pain scale between the 40-60 s intervals and post-30-s MVC (upright< inversion, and without BFR< BFR). Conclusion The concomitant application of inversion with elbow flexors BFR only amplified neuromuscular performance impairments to a small degree. Individuals who execute forceful contractions when inverted or with BFR should be cognizant that force output may be impaired.}, language = {en} } @article{LesinskiHerzSchmelcheretal.2020, author = {Lesinski, Melanie and Herz, Michael and Schmelcher, Alina and Granacher, Urs}, title = {Effects of resistance training on physical fitness in healthy children and adolescents}, series = {Sports medicine}, volume = {50}, journal = {Sports medicine}, number = {11}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-020-01327-3}, pages = {1901 -- 1928}, year = {2020}, abstract = {Background Over the past decades, an exponential growth has occurred with regards to the number of scientific publications including meta-analyses on youth resistance training (RT). Accordingly, it is timely to summarize findings from meta-analyses in the form of an umbrella review. Objectives To systematically review and summarise the findings of published meta-analyses that investigated the effects of RT on physical fitness in children and adolescents. Design Systematic umbrella review of meta-analyses. Data Sources Meta-analyses were identified using systematic literature searches in the databases PubMed, Web of Science, and Cochrane Library. Eligibility Criteria for Selecting Meta-analyses Meta-analyses that examined the effects of RT on physical fitness (e.g., muscle strength, muscle power) in healthy youth (<= 18 years). Results Fourteen meta-analyses were included in this umbrella review. Eleven of these meta-analyses reported between-subject effect sizes which are important to eliminate bias due to growth and maturation. RT produced medium-to-large effects on muscle strength, small-to-large effects on muscle power, small-to-medium effects on linear sprint, a medium effect on agility/change-of-direction speed, small-to-large effects on throwing performance, and a medium effect on sport-specific enhancement. There were few consistent moderating effects of maturation, age, sex, expertise level, or RT type on muscle strength and muscle power across the included meta-analyses. The analysed meta-analyses showed low-to-moderate methodological quality (AMSTAR2) as well as presented evidence of low-to-very low quality (GRADE). Conclusion This umbrella review proved the effectiveness of RT in youth on a high evidence level. The magnitude of effects varies according to the respective outcome measure and it appears to follow the principle of training specificity. Larger effect sizes were found for strength-related outcome measures. Future studies should consistently report data on participants' maturational status. More research is needed with prepubertal children and girls, irrespective of their maturational status.}, language = {en} } @article{JafarnezhadgeroMadadiShadAlaviMehretal.2018, author = {Jafarnezhadgero, Amir Ali and Madadi-Shad, Morteza and Alavi-Mehr, Seyed Majid and Granacher, Urs}, title = {The long-term use of foot orthoses affects walking kinematics and kinetics of children with flexible flat feet}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {10}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0205187}, pages = {1 -- 19}, year = {2018}, abstract = {Background Due to inconclusive evidence on the effects of foot orthoses treatment on lower limb kinematics and kinetics in children, studies are needed that particularly evaluate the long-term use of foot orthoses on lower limb alignment during walking. Thus, the main objective of this study was to evaluate the effects of long-term treatment with arch support foot orthoses versus a sham condition on lower extremity kinematics and kinetics during walking in children with flexible flat feet. Methods Thirty boys aged 8-12 years with flexible flat feet participated in this study. While the experimental group (n = 15) used medial arch support foot orthoses during everyday activities over a period of four months, the control group (n = 15) received flat 2-mm-thick insoles (i.e., sham condition) for the same time period. Before and after the intervention period, walking kinematics and ground reaction forces were collected. Results Significant group by time interactions were observed during walking at preferred gait speed for maximum ankle eversion, maximum ankle internal rotation angle, minimum knee abduction angle, maximum knee abduction angle, maximum knee external rotation angle, maximum knee internal rotation angle, maximum hip extension angle, and maximum hip external rotation angle in favor of the foot orthoses group. In addition, statistically significant group by time interactions were detected for maximum posterior, and vertical ground reaction forces in favor of the foot orthoses group. Conclusions The long-term use of arch support foot orthoses proved to be feasible and effective in boys with flexible flat feet to improve lower limb alignment during walking.}, language = {en} } @article{MakhloufChaouachiChaouachietal.2018, author = {Makhlouf, Issam and Chaouachi, Anis and Chaouachi, Mehdi and Othman, Aymen Ben and Granacher, Urs}, title = {Combination of Agility and Plyometric Training Provides Similar Training Benefits as Combined Balance and Plyometric Training in Young Soccer Players}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01611}, pages = {1 -- 17}, year = {2018}, abstract = {Introduction: Studies that combined balance and resistance training induced larger performance improvements compared with single mode training. Agility exercises contain more dynamic and sport-specific movements compared with balance training. Thus, the purpose of this study was to contrast the effects of combined balance and plyometric training with combined agility and plyometric training and an active control on physical fitness in youth. Methods: Fifty-seven male soccer players aged 10-12 years participated in an 8-week training program (2 × week). They were randomly assigned to a balance-plyometric (BPT: n = 21), agility-plyometric (APT: n = 20) or control group (n = 16). Measures included proxies of muscle power [countermovement jump (CMJ), triple-hop-test (THT)], muscle strength [reactive strength index (RSI), maximum voluntary isometric contraction (MVIC) of handgrip, back extensors, knee extensors], agility [4-m × 9-m shuttle run, Illinois change of direction test (ICODT) with and without the ball], balance (Standing Stork, Y-Balance), and speed (10-30 m sprints). Results: Significant time × group interactions were found for CMJ, hand grip MVIC force, ICODT without a ball, agility (4 m × 9 m), standing stork balance, Y-balance, 10 and 30-m sprint. The APT pre- to post-test measures displayed large ES improvements for hand grip MVIC force, ICODT without a ball, agility test, CMJ, standing stork balance test, Y-balance test but only moderate ES improvements with the 10 and 30 m sprints. The BPT group showed small (30 m sprint), moderate (hand grip MVIC, ICODTwithout a ball) and large ES [agility (4 m × 9 m) test, CMJ, standing stork balance test, Y-balance] improvements, respectively. Conclusion: In conclusion, both training groups provided significant improvements in all measures. It is recommended that youth incorporate balance exercises into their training and progress to agility with their strength and power training.}, language = {en} } @article{AraziAsadiKhalkhalietal.2020, author = {Arazi, Hamid and Asadi, Abbas and Khalkhali, Farhood and Boullosa, Daniel and Hackney, Anthony C. and Granacher, Urs and Zouhal, Hassane}, title = {Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00995}, pages = {7}, year = {2020}, abstract = {This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52\%) compared with ACWRRA (ranging between 17 and 39\%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season.}, language = {en} } @article{HelmPrieskeMuehlbaueretal.2018, author = {Helm, Norman and Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Granacher, Urs}, title = {Effects of judo-specific resistance training on kinetic and electromyographic parameters of pulling exercises in judo athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {32}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0043-122781}, pages = {134 -- 142}, year = {2018}, abstract = {Background In judo, rapid force production during pulling movements is an important component of athletic performance, which is why this capacity needs to be specifically exercised in judo. This study aimed at examining the effects of a judo-specific resistance training program using a judo ergometer system (PTJ) versus a traditional resistance training regime using a partner (PTP) on kinetics and muscle activity of judo-specific pulling exercises. Method Twenty-four male judo athletes (age: 22 +/- 4 years, training experience: 15 +/- 3 years) were randomly assigned to two groups. In a crossover design, the first group completed a 4-week PTJ followed by four weeks of PTP (each with three sessions per week). The second group conducted PTP prior to PTJ. PTJ and PTP were completed in addition to regular training. Before, 4 weeks and 8 weeks after training, tests were conducted to assess judo-specific pulling kinetics (i.e. maximal force, rate of force development [RFD], mechanical work) and electromyographic (EMG) shoulder/trunk muscle activity (i.e. biceps brachii muscle, deltoid muscle, trapezius muscle, erector spinae muscle) during pulling movements using a judo ergometer as well as unspecific strength tests (i.e. bench-pull, pull-ups). Results The statistical analysis revealed that in both groups ergometer pulling kinetics (p<.05, 0.83 <= d <= 1.77) and EMG activity (p<.05; 1.07 <= d <= 2.25) were significantly enhanced following 8 weeks of training. In addition, significantly larger gains in RFD, mechanical work, and EMG activity (i.e. deltoid muscle, erector spinae muscle, trapezius muscle) were found following PTJ compared to PTP (p<.05, 1.25 <= d <= 2.79). No significant enhancements were observed with the unspecific strength tests. Conclusion Our findings indicate that PTJ is superior to PTP regarding training-induced improvements in force production and muscle activity during judo-specific pulling exercises. Performance enhancements may partly be attributed to neural adaptations. No transfer effects on unspecific strength tests were detected following PTJ and PTP.}, language = {de} } @article{GaeblerPrieskeHortobagyietal.2018, author = {G{\"a}bler, Martijn and Prieske, Olaf and Hortobagyi, Tibor and Granacher, Urs}, title = {The Effects of Concurrent Strength and Endurance Training on Physical Fitness and Athletic Performance in Youth}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01057}, pages = {1 -- 13}, year = {2018}, abstract = {Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6-11 years, boys age 6-13 years) or adolescents (girls age 12-18 years, boys age 14-18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power—(e.g., jump height), endurance—(e.g., peak V°O2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth.}, language = {en} } @misc{GaeblerBerberyanPrieskeetal.2022, author = {G{\"a}bler, Martijn and Berberyan, Hermine S. and Prieske, Olaf and Elferink-Gemser, Marije Titia and Hortobagyi, Tibor and Warnke, Torsten and Granacher, Urs}, title = {Strength Training Intensity and Volume Affect Performance of Young Kayakers/Canoeists}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54228}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542283}, pages = {1 -- 10}, year = {2022}, abstract = {Purpose: The aim of this study was to compare the effects of moderate intensity, low volume (MILV) vs. low intensity, high volume (LIHV) strength training on sport-specific performance, measures of muscular fitness, and skeletal muscle mass in young kayakers and canoeists. Methods: Semi-elite young kayakers and canoeists (N = 40, 13 ± 0.8 years, 11 girls) performed either MILV (70-80\% 1-RM, 6-12 repetitions per set) or LIHV (30-40\% 1-RM, 60-120 repetitions per set) strength training for one season. Linear mixed-effects models were used to compare effects of training condition on changes over time in 250 and 2,000 m time trials, handgrip strength, underhand shot throw, average bench pull power over 2 min, and skeletal muscle mass. Both between- and within-subject designs were used for analysis. An alpha of 0.05 was used to determine statistical significance. Results: Between- and within-subject analyses showed that monthly changes were greater in LIHV vs. MILV for the 2,000 m time trial (between: 9.16 s, SE = 2.70, p < 0.01; within: 2,000 m: 13.90 s, SE = 5.02, p = 0.01) and bench pull average power (between: 0.021 W⋅kg-1, SE = 0.008, p = 0.02; within: 0.010 W⋅kg-1, SE = 0.009, p > 0.05). Training conditions did not affect other outcomes. Conclusion: Young sprint kayakers and canoeists benefit from LIHV more than MILV strength training in terms of 2,000 m performance and muscular endurance (i.e., 2 min bench pull power).}, language = {en} } @misc{PrieskeMaffiulettiGranacher2018, author = {Prieske, Olaf and Maffiuletti, Nicola A. and Granacher, Urs}, title = {Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {483}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420558}, pages = {10}, year = {2018}, abstract = {Background: Infection with human immunodeficiency virus (HIV) affects muscle mass, altering independent activities of people living with HIV (PLWH). Resistance training alone (RT) or combined with aerobic exercise (AE) is linked to improved muscle mass and strength maintenance in PLWH. These exercise benefits have been the focus of different meta-analyses, although only a limited number of studies have been identified up to the year 2013/4. An up-to-date systematic review and meta-analysis concerning the effect of RT alone or combined with AE on strength parameters and hormones is of high value, since more and recent studies dealing with these types of exercise in PLWH have been published. Methods: Randomized controlled trials evaluating the effects of RT alone, AE alone or the combination of both (AERT) on PLWH was performed through five web-databases up to December 2017. Risk of bias and study quality was attained using the PEDro scale. Weighted mean difference (WMD) from baseline to post-intervention changes was calculated. The I2 statistics for heterogeneity was calculated. Results: Thirteen studies reported strength outcomes. Eight studies presented a low risk of bias. The overall change in upper body strength was 19.3 Kg (95\% CI: 9.8±28.8, p< 0.001) after AERT and 17.5 Kg (95\% CI: 16±19.1, p< 0.001) for RT. Lower body change was 29.4 Kg (95\% CI: 18.1±40.8, p< 0.001) after RT and 10.2 Kg (95\% CI: 6.7±13.8, p< 0.001) for AERT. Changes were higher after controlling for the risk of bias in upper and lower body strength and for supervised exercise in lower body strength. A significant change towards lower levels of IL-6 was found (-2.4 ng/dl (95\% CI: -2.6, -2.1, p< 0.001). Conclusion: Both resistance training alone and combined with aerobic exercise showed a positive change when studies with low risk of bias and professional supervision were analyzed, improving upper and, more critically, lower body muscle strength. Also, this study found that exercise had a lowering effect on IL-6 levels in PLWH.}, language = {en} } @misc{GschwindBridenbaughReinhardetal.2017, author = {Gschwind, Yves J. and Bridenbaugh, Stephanie A. and Reinhard, Sarah and Granacher, Urs and Monsch, Andreas U. and Kressig, Reto W.}, title = {Ginkgo biloba special extract LI 1370 improves dual-task walking in patients with MCI}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {870}, issn = {1866-8372}, doi = {10.25932/publishup-43479}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434796}, pages = {609 -- 619}, year = {2017}, abstract = {Background In patients with mild cognitive impairment (MCI), gait instability, particularly in dual-task situations, has been associated with impaired executive function and an increased fall risk. Ginkgo biloba extract (GBE) could be an effective mean to improve gait stability. Aims This study investigated the effect of GBE on spatiotemporal gait parameters of MCI patients while walking under single and dual-task conditions. Methods Fifty patients aged 50-85 years with MCI and associated dual-task-related gait impairment participated in this randomised, double-blind, placebo-controlled, exploratory phase IV drug trial. Intervention group (IG) patients received GBE (Symfona (R) forte 120 mg) twice-daily for 6 months while control group (CG) patients received placebo capsules. A 6-month open-label phase with identical GBE dosage followed. Gait was quantified at months 0, 3, 6 and 12. Results After 6 months, dual-task-related cadence increased in the IG compared to the CG (p = 0.019, d = 0.71). No significant changes, but GBE-associated numerical non-significant trends were found after 6-month treatment for dual-task-related gait velocity and stride time variability. Discussion Findings suggest that 120 mg of GBE twice-daily for at least 6 months may improve dual-task-related gait performance in patients with MCI. Conclusions The observed gait improvements add to the understanding of the self-reported unspecified improvements among MCI patients when treated with standardised GBE.}, language = {en} } @misc{ZinkeWarnkeGaebleretal.2019, author = {Zinke, Fridolin and Warnke, Torsten and G{\"a}bler, Martijn and Granacher, Urs}, title = {Effects of Isokinetic Training on Trunk Muscle Fitness and Body Composition in World-Class Canoe Sprinters}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {536}, issn = {1866-8364}, doi = {10.25932/publishup-42489}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424898}, year = {2019}, abstract = {In canoe sprint, the trunk muscles play an important role in stabilizing the body in an unstable environment (boat) and in generating forces that are transmitted through the shoulders and arms to the paddle for propulsion of the boat. Isokinetic training is well suited for sports in which propulsion is generated through water resistance due to similarities in the resistive mode. Thus, the purpose of this study was to determine the effects of isokinetic training in addition to regular sport-specific training on trunk muscular fitness and body composition in world-class canoeists and to evaluate associations between trunk muscular fitness and canoe-specific performance. Nine world-class canoeists (age: 25.6 ± 3.3 years; three females; four world champions; three Olympic gold medalists) participated in an 8-week progressive isokinetic training with a 6-week block "muscle hypertrophy" and a 2-week block "muscle power." Pre- and post-tests included the assessment of peak isokinetic torque at different velocities in concentric (30 and 140∘s-1) and eccentric (30 and 90∘s-1) mode, trunk muscle endurance, and body composition (e.g., body fat, segmental lean mass). Additionally, peak paddle force was assessed in the flume at a water current of 3.4 m/s. Significant pre-to-post increases were found for peak torque of the trunk rotators at 30∘s-1 (p = 0.047; d = 0.4) and 140∘s-1 (p = 0.014; d = 0.7) in concentric mode. No significant pre-to-post changes were detected for eccentric trunk rotator torque, trunk muscle endurance, and body composition (p > 0.148). Significant medium-to-large correlations were observed between concentric trunk rotator torque but not trunk muscle endurance and peak paddle force, irrespective of the isokinetic movement velocity (all r ≥ 0.886; p ≤ 0.008). Isokinetic trunk rotator training is effective in improving concentric trunk rotator strength in world-class canoe sprinters. It is recommended to progressively increase angular velocity from 30∘s-1 to 140∘s-1 over the course of the training period.}, language = {en} } @misc{PeitzBehringerGranacher2019, author = {Peitz, Matti and Behringer, Michael and Granacher, Urs}, title = {A systematic review on the effects of resistance and plyometric training on physical fitness in youth}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {498}, issn = {1866-8364}, doi = {10.25932/publishup-42220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422201}, year = {2019}, abstract = {Introduction To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies.}, language = {en} } @misc{JafarnezhadgeroFatollahiAmirzadehetal.2019, author = {Jafarnezhadgero, Amir Ali and Fatollahi, Amir and Amirzadeh, Nasrin and Siahkouhian, Marefat and Granacher, Urs}, title = {Ground Reaction Forces and Muscle Activity While Walking on Sand versus Stable Ground in Individuals with Pronated Feet Compared with Healthy Controls}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {590}, issn = {1866-8364}, doi = {10.25932/publishup-44102}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441027}, pages = {17}, year = {2019}, abstract = {Background Sand is an easy-to-access, cost-free resource that can be used to treat pronated feet (PF). Therefore, the aims of this study were to contrast the effects of walking on stable ground versus walking on sand on ground reaction forces (GRFs) and electromyographic (EMG) activity of selected lower limb muscles in PF individuals compared with healthy controls. Methods Twenty-nine controls aged 22.2±2.5 years and 30 PF individuals aged 22.2±1.9 years were enrolled in this study. Participants walked at preferred speed and in randomized order over level ground and sand. A force plate was included in the walkway to collect GRFs. Muscle activities were recorded using EMG system. Results No statistically significant between-group differences were found in preferred walking speed when walking on stable ground (PF: 1.33±0.12 m/s; controls: 1.35±0.14 m/s; p = 0.575; d = 0.15) and sand (PF: 1.19±0.11 m/s; controls: 1.23±0.18 m/s; p = 0.416; d = 0.27). Irrespective of the group, walking on sand (1.21±0.15 m/s) resulted in significantly lower gait speed compared with stable ground walking (1.34±0.13 m/s) (p<0.001; d = 0.93). Significant main effects of "surface" were found for peak posterior GRFs at heel contact, time to peak for peak lateral GRFs at heel contact, and peak anterior GRFs during push-off (p<0.044; d = 0.27-0.94). Pair-wise comparisons revealed significantly smaller peak posterior GRFs at heel contact (p = 0.005; d = 1.17), smaller peak anterior GRFs during push-off (p = 0.001; d = 1.14), and time to peak for peak lateral GRFs (p = 0.044; d = 0.28) when walking on sand. No significant main effects of "group" were observed for peak GRFs and their time to peak (p>0.05; d = 0.06-1.60). We could not find any significant group by surface interactions for peak GRFs and their time to peak. Significant main effects of "surface" were detected for anterior-posterior impulse and peak positive free moment amplitude (p<0.048; d = 0.54-0.71). Pair-wise comparisons revealed a significantly larger peak positive free moment amplitude (p = 0.010; d = 0.71) and a lower anterior-posterior impulse (p = 0.048; d = 0.38) when walking on sand. We observed significant main effects of "group" for the variable loading rate (p<0.030; d = 0.59). Pair-wise comparisons revealed significantly lower loading rates in PF compared with controls (p = 0.030; d = 0.61). Significant group by surface interactions were observed for the parameter peak positive free moment amplitude (p<0.030; d = 0.59). PF individuals exhibited a significantly lower peak positive free moment amplitude (p = 0.030, d = 0.41) when walking on sand. With regards to EMG, no significant main effects of "surface", main effects of "group", and group by surface interactions were observed for the recorded muscles during the loading and push-off phases (p>0.05; d = 0.00-0.53). Conclusions The observed lower velocities during walking on sand compared with stable ground were accompanied by lower peak positive free moments during the push-off phase and loading rates during the loading phase. Our findings of similar lower limb muscle activities during walking on sand compared with stable ground in PF together with lower free moment amplitudes, vertical loading rates, and lower walking velocities on sand may indicate more relative muscle activity on sand compared with stable ground. This needs to be verified in future studies.}, language = {en} } @misc{JafarnezhadgeroMadadiShadAlaviMehretal.2018, author = {Jafarnezhadgero, Amir Ali and Madadi-Shad, Morteza and Alavi-Mehr, Seyed Majid and Granacher, Urs}, title = {The long-term use of foot orthoses affects walking kinematics and kinetics of children with flexible flat feet}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {479}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419852}, pages = {19}, year = {2018}, abstract = {Background Due to inconclusive evidence on the effects of foot orthoses treatment on lower limb kinematics and kinetics in children, studies are needed that particularly evaluate the long-term use of foot orthoses on lower limb alignment during walking. Thus, the main objective of this study was to evaluate the effects of long-term treatment with arch support foot orthoses versus a sham condition on lower extremity kinematics and kinetics during walking in children with flexible flat feet. Methods Thirty boys aged 8-12 years with flexible flat feet participated in this study. While the experimental group (n = 15) used medial arch support foot orthoses during everyday activities over a period of four months, the control group (n = 15) received flat 2-mm-thick insoles (i.e., sham condition) for the same time period. Before and after the intervention period, walking kinematics and ground reaction forces were collected. Results Significant group by time interactions were observed during walking at preferred gait speed for maximum ankle eversion, maximum ankle internal rotation angle, minimum knee abduction angle, maximum knee abduction angle, maximum knee external rotation angle, maximum knee internal rotation angle, maximum hip extension angle, and maximum hip external rotation angle in favor of the foot orthoses group. In addition, statistically significant group by time interactions were detected for maximum posterior, and vertical ground reaction forces in favor of the foot orthoses group. Conclusions The long-term use of arch support foot orthoses proved to be feasible and effective in boys with flexible flat feet to improve lower limb alignment during walking.}, language = {en} } @article{MuehlbauerBesemerWehrleetal.2012, author = {M{\"u}hlbauer, Thomas and Besemer, Carmen and Wehrle, Anja and Gollhofer, Albert and Granacher, Urs}, title = {Relationship between strength, power and balance performance in seniors}, series = {Gerontology}, volume = {58}, journal = {Gerontology}, number = {6}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000341614}, pages = {504 -- 512}, year = {2012}, abstract = {Background: Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. Objective: The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Methods: Twenty-four healthy and physically active older adults (mean age: 70 8 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up \& Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Results: Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). Conclusion: The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily.}, language = {en} } @article{GrabowYoungAlcocketal.2018, author = {Grabow, Lena and Young, James D. and Alcock, Lynsey R. and Quigley, Patrick J. and Byrne, Jeannette M. and Granacher, Urs and Skarabot, Jakob and Behm, David George}, title = {Higher Quadriceps Roller Massage Forces Do Not Amplify Range-of-Motion Increases nor Impair Strength and Jump Performance}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000001906}, pages = {3059 -- 3069}, year = {2018}, abstract = {Grabow, L, Young, JD, Alcock, LR, Quigley, PJ, Byrne, JM, Granacher, U, Škarabot, J, and Behm, DG. Higher quadriceps roller massage forces do not amplify range-of-motion increases nor impair strength and jump performance. J Strength Cond Res 32(11): 3059-3069, 2018—Roller massage (RM) has been reported to increase range of motion (ROM) without subsequent performance decrements. However, the effects of different rolling forces have not been examined. The purpose of this study was to compare the effects of sham (RMsham), moderate (RMmod), and high (RMhigh) RM forces, calculated relative to the individuals' pain perception, on ROM, strength, and jump parameters. Sixteen healthy individuals (27 ± 4 years) participated in this study. The intervention involved three 60-second quadriceps RM bouts with RMlow (3.9/10 ± 0.64 rating of perceived pain [RPP]), RMmod (6.2/10 ± 0.64 RPP), and RMhigh (8.2/10 ± 0.44 RPP) pain conditions, respectively. A within-subject design was used to assess dependent variables (active and passive knee flexion ROM, single-leg drop jump [DJ] height, DJ contact time, DJ performance index, maximum voluntary isometric contraction [MVIC] force, and force produced in the first 200 milliseconds [F200] of the knee extensors and flexors). A 2-way repeated measures analysis of variance showed a main effect of testing time in active (p < 0.001, d = 2.54) and passive (p < 0.001, d = 3.22) ROM. Independent of the RM forces, active and passive ROM increased by 7.0\% (p = 0.03, d = 2.25) and 15.4\% (p < 0.001, d = 3.73) from premeasure to postmeasure, respectively. Drop jump and MVIC parameters were unaffected from pretest to posttest (p > 0.05, d = 0.33-0.84). Roller massage can be efficiently used to increase ROM without substantial pain and without subsequent performance impairments.}, language = {en} } @article{ChaabeneNegraCapranicaetal.2019, author = {Chaabene, Helmi and Negra, Yassine and Capranica, Laura and Prieske, Olaf and Granacher, Urs}, title = {A Needs Analysis of Karate Kumite With Recommendations for Performance Testing and Training}, series = {Strength and conditioning journal}, volume = {41}, journal = {Strength and conditioning journal}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1524-1602}, doi = {10.1519/SSC.0000000000000445}, pages = {35 -- 46}, year = {2019}, abstract = {An effective training program needs to be customized to the specific demands of the redpective sport. Therefore, it is important to conduct a needs analysis to gain information on the unique characteristics of the sport. The objectives of thes review were (A) to conduct a systematic needs analysis of karate kumite and (B) to provide practical recommendations for sport-specific performance testing and training of karate kumite athletes.}, language = {en} } @article{LesinskiPrieskeHelmetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Helm, Norman and Granacher, Urs}, title = {Effects of Soccer Training on Anthropometry, Body Composition, and Physical Fitness during a Soccer Season in Female Elite Young Athletes: A Prospective Cohort Study}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.01093}, pages = {13}, year = {2017}, abstract = {The objectives of this study were to (i) describe soccer training (e.g., volume, types), anthropometry, body composition, and physical fitness and (0 compute associations between soccer training data and relative changes of anthropometry, body composition, and physical fitness during a soccer season in female elite young athletes. Seasonal training (i.e., day-to-day training volume/types) as well as variations in anthropometry (e.g., body height/mass), body composition (e.g., lean body/fat mass), and physical fitness (e.g., muscle strength/power, speed, balance) were collected from 17 female elite young soccer players (15.3 +/- 0.5 years) over the training periods (i.e., preparation, competition, transition) of a soccer season that resulted in the German championship title in under-17 female soccer. Training volume/types, anthropometrics, body composition, and physical fitness significantly varied over a soccer season. During the two preparation periods, higher volumes in resistance and endurance training were performed (2.00 <= d <= 18.15; p < 0.05), while higher sprint and tactical training volumes were applied during the two competition periods (2.22 <= d <= 11.18; p < 0.05). Body height and lean body mass increased over the season (2.50 <= d <= 3.39; p < 0.01). In terms of physical fitness, significant performance improvements were found over the soccer season in measures of balance, endurance, and sport-specific performance (2.52 <= d <= 3.95; p < 0.05). In contrast, no statistically significant changes were observed for measures of muscle power/endurance, speed, and change-of-direction speed. Of note, variables of muscle strength (i.e., leg extensors) significantly decreased (d = 2.39: p < 0.01) over the entire season. Our period specific sub analyses revealed significant performance improvements during the first round of the season for measures of muscle power/endurance, and balance (0.89 <= d <= 4.01; p < 0.05). Moreover, change-of-direction speed significantly declined after the first round of the season, i.e., transition period (d = 2.83; p < 0.01). Additionally, significant medium-to-large associations were observed between training and anthropometrics/body composition/physical fitness (-0.541 <= r <= 0.505). Soccer training and/or growth/maturation contributed to significant variations in anthropometry, body composition, and physical fitness outcomes throughout the different training periods over the course of a soccer season in female elite young soccer players. However, changes in components of fitness were inconsistent (e.g., power, speed, strength). Thus, training volume and/or types should be carefully considered in order to develop power-, speed- or strength-related fitness measures more efficiently throughout the soccer season.}, language = {en} } @article{PrieskeChaabeneGaebleretal.2020, author = {Prieske, Olaf and Chaabene, Helmi and G{\"a}bler, Martijn and Herz, Michael and Helm, Norman and Markov, Adrian and Granacher, Urs}, title = {Seasonal changes in anthropometry, body composition, and physical fitness and the relationships with sporting success in young sub-elite judo athletes}, series = {International journal of environmental research and public health : IJERPH}, volume = {17}, journal = {International journal of environmental research and public health : IJERPH}, number = {19}, publisher = {MDPI AG}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph17197169}, pages = {17}, year = {2020}, abstract = {This exploratory study aimed to monitor long-term seasonal developments in measures of anthropometry, body composition, and physical fitness in young judo athletes, and to compute associations between these measures and sporting success. Forty-four young judoka (20 females, 24 males) volunteered to participate. Tests for the assessment of anthropometry (e.g., body height/mass), body-composition (e.g., lean body mass), muscle strength (isometric handgrip strength), vertical jumping (e.g., countermovement-jump (CMJ) height), and dynamic balance (Y-balance test) were conducted at the beginning and end of a 10-month training season. Additionally, sporting success at the end of the season was recorded for each athlete. Analyses revealed significant time x sex interaction effects for lean-body-mass, isometric handgrip strength, and CMJ height (0.7 <= d <= 1.6). Post-hoc analyses showed larger gains for all measures in young males (1.9 <= d <= 6.0) compared with females (d = 2.4) across the season. Additionally, significant increases in body height and mass as well as Y-balance test scores were found from pre-to-post-test (1.2 <= d <= 4.3), irrespective of sex. Further, non-significant small-to-moderate-sized correlations were identified between changes in anthropometry/body composition/physical fitness and sporting success (p > 0.05; -0.34 <= rho <= 0.32). Regression analysis confirmed that no model significantly predicted sporting success. Ten months of judo training and/or growth/maturation contributed to significant changes in anthropometry, body composition, and physical fitness, particularly in young male judo athletes.}, language = {en} } @article{KasmiZouhalHammamietal.2021, author = {Kasmi, Sofien and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Hackney, Anthony C. and Hammami, Amri and Chtara, Moktar and Chortane, Sabri Gaied and Ben Salah, Fatma Zohra and Granacher, Urs and Ben Ounis, Omar}, title = {The Effects of Eccentric and Plyometric Training Programs and Their Combination on Stability and the Functional Performance in the Post-ACL-Surgical Rehabilitation Period of Elite Female Athletes}, series = {Frontiers in physiology}, volume = {12}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.688385}, pages = {1 -- 11}, year = {2021}, abstract = {Background: The standard method to treat physically active patients with anterior cruciate ligament (ACL) rupture is ligament reconstruction surgery. The rehabilitation training program is very important to improve functional performance in recreational athletes following ACL reconstruction. Objectives: The aims of this study were to compare the effects of three different training programs, eccentric training (ECC), plyometric training (PLYO), or combined eccentric and plyometric training (COMB), on dynamic balance (Y-BAL), the Lysholm Knee Scale (LKS), the return to sport index (RSI), and the leg symmetry index (LSI) for the single leg hop test for distance in elite female athletes after ACL surgery. Materials and Methods: Fourteen weeks after rehabilitation from surgery, 40 elite female athletes (20.3 ± 3.2 years), who had undergone an ACL reconstruction, participated in a short-term (6 weeks; two times a week) training study. All participants received the same rehabilitation protocol prior to the training study. Athletes were randomly assigned to three experimental groups, ECC (n = 10), PLYO (n = 10), and COMB (n = 10), and to a control group (CON: n = 10). Testing was conducted before and after the 6-week training programs and included the Y-BAL, LKS, and RSI. LSI was assessed after the 6-week training programs only. Results: Adherence rate was 100\% across all groups and no training or test-related injuries were reported. No significant between-group baseline differences (pre-6-week training) were observed for any of the parameters. Significant group-by-time interactions were found for Y-BAL (p < 0.001, ES = 1.73), LKS (p < 0.001, ES = 0.76), and RSI (p < 0.001, ES = 1.39). Contrast analysis demonstrated that COMB yielded significantly greater improvements in Y-BAL, LKS, and RSI (all p < 0.001), in addition to significantly better performances in LSI (all p < 0.001), than CON, PLYO, and ECC, respectively. Conclusion: In conclusion, combined (eccentric/plyometric) training seems to represent the most effective training method as it exerts positive effects on both stability and functional performance in the post-ACL-surgical rehabilitation period of elite female athletes.}, language = {en} } @article{DelfanVahedBishopetal.2022, author = {Delfan, Maryam and Vahed, Alieh and Bishop, David and Juybari, Raheleh Amadeh and Laher, Ismail and Saeidi, Ayoub and Granacher, Urs and Zouhal, Hassane}, title = {Effects of two workload-matched high-intensity interval training protocols on regulatory factors associated with mitochondrial biogenesis in the soleus muscle of diabetic rats}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2022.927969}, pages = {1 -- 12}, year = {2022}, abstract = {Aims: High intensity interval training (HIIT) improves mitochondrial characteristics. This study compared the impact of two workload-matched high intensity interval training (HIIT) protocols with different work:recovery ratios on regulatory factors related to mitochondrial biogenesis in the soleus muscle of diabetic rats. Materials and methods: Twenty-four Wistar rats were randomly divided into four equal-sized groups: non-diabetic control, diabetic control (DC), diabetic with long recovery exercise [4-5 × 2-min running at 80\%-90\% of the maximum speed reached with 2-min of recovery at 40\% of the maximum speed reached (DHIIT1:1)], and diabetic with short recovery exercise (5-6 × 2-min running at 80\%-90\% of the maximum speed reached with 1-min of recovery at 30\% of the maximum speed reached [DHIIT2:1]). Both HIIT protocols were completed five times/week for 4 weeks while maintaining equal running distances in each session. Results: Gene and protein expressions of PGC-1α, p53, and citrate synthase of the muscles increased significantly following DHIIT1:1 and DHIIT2:1 compared to DC (p ˂ 0.05). Most parameters, except for PGC-1α protein (p = 0.597), were significantly higher in DHIIT2:1 than in DHIIT1:1 (p ˂ 0.05). Both DHIIT groups showed significant increases in maximum speed with larger increases in DHIIT2:1 compared with DHIIT1:1. Conclusion: Our findings indicate that both HIIT protocols can potently up-regulate gene and protein expression of PGC-1α, p53, and CS. However, DHIIT2:1 has superior effects compared with DHIIT1:1 in improving mitochondrial adaptive responses in diabetic rats.}, language = {en} } @article{GranacherPrieskeMajewskietal.2015, author = {Granacher, Urs and Prieske, Olaf and Majewski, M. and B{\"u}sch, Dirk and M{\"u}hlbauer, Thomas}, title = {The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {5}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0034-1395519}, pages = {386 -- 394}, year = {2015}, abstract = {The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15 +/- 1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46f1.36). Additionally, a Training groupxTime interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance.}, language = {en} } @article{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, pages = {22}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @article{GranacherBorde2017, author = {Granacher, Urs and Borde, Ron}, title = {Effects of Sport-Specific Training during the Early Stages of Long-Term Athlete Development on Physical Fitness, Body Composition, Cognitive, and Academic Performances}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.00810}, pages = {1 -- 11}, year = {2017}, abstract = {Introduction: Several sports demand an early start into long-term athlete development (LTAD) because peak performances are achieved at a relatively young age (e.g., gymnastics). However, the challenging combination of high training volumes and academic demands may impede youth athletes' cognitive and academic performances. Thus, the aims of this study were to examine the effects of a 1-year sport-specific training and/or physical education on physical fitness, body composition, cognitive and academic performances in youth athletes and their non-athletic peers. Methods: Overall, 45 prepubertal fourth graders from a German elite sport school were enrolled in this study. Participating children were either youth athletes from an elite sports class (n = 20, age 9.5 ± 0.5 years) or age-matched peers from a regular class (n = 25, age 9.6 ± 0.6 years). Over the 1-year intervention period, the elite sports class conducted physical education and sport-specific training (i.e., gymnastics, swimming, soccer, bicycle motocross [BMX]) during school time while the regular class attended physical education only. Of note, BMX is a specialized form of cycling that is performed on motocross tracks and affords high technical skills. Before and after intervention, tests were performed for the assessment of physical fitness (speed [20-m sprint], agility [star agility run], muscle power [standing long jump], flexibility [stand-and-reach], endurance [6-min-run], balance [single-leg stance]), body composition (e.g., muscle mass), cognitive (d2-test) and academic performance (reading [ELFE 1-6], writing [HSP 4-5], calculating [DEMAT 4]). In addition, grades in German, English, Mathematics, and physical education were documented. Results: At baseline, youth athletes showed better physical fitness performances (p < 0.05; d = 0.70-2.16), less relative body fat mass, more relative skeletal muscle mass (p < 0.01; d = 1.62-1.84), and similar cognitive and academic achievements compared to their non-athletic peers. Athletes' training volume amounted to 620 min/week over the 1-year period while their peers performed 155 min/week. After the intervention, significant differences were found in 6 out of 7 physical fitness tests (p < 0.05; d = 0.75-1.40) and in the physical education grades (p < 0.01; d = 2.36) in favor of the elite sports class. No significant between-group differences were found after the intervention in measures of body composition (p > 0.05; d = 0.66-0.67), cognition and academics (p > 0.05; d = 0.40-0.64). Our findings revealed no significant between-group differences in growth rate (deltas of pre-post-changes in body height and leg length). Discussion: Our results revealed that a school-based 1-year sport-specific training in combination with physical education improved physical fitness but did not negatively affect cognitive and academic performances of youth athletes compared to their non-athletic peers. It is concluded that sport-specific training in combination with physical education promotes youth athletes' physical fitness development during LTAD and does not impede their cognitive and academic development.}, language = {en} } @article{GebelLuederGranacher2019, author = {Gebel, Arnd and L{\"u}der, Benjamin and Granacher, Urs}, title = {Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01135}, pages = {13}, year = {2019}, abstract = {Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5\% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents.}, language = {en} } @article{GschwindKressigLacroixetal.2013, author = {Gschwind, Yves J. and Kressig, Reto W. and Lacroix, Andre and M{\"u}hlbauer, Thomas and Pfenninger, Barbara and Granacher, Urs}, title = {A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults - study protocol for a randomized controlled trial}, series = {BMC geriatrics}, volume = {13}, journal = {BMC geriatrics}, number = {4}, publisher = {BioMed Central}, address = {London}, issn = {1471-2318}, doi = {10.1186/1471-2318-13-105}, pages = {13}, year = {2013}, abstract = {Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.}, language = {en} } @article{JafarnezhadgeroNorooziFakhrietal.2022, author = {Jafarnezhadgero, Amir Ali and Noroozi, Raha and Fakhri, Ehsan and Granacher, Urs and Oliveira, Anderson Souza}, title = {The Impact of COVID-19 and muscle fatigue on cardiorespiratory fitness and running kinetics in female recreational runners}, series = {Frontiers in physiology}, volume = {13}, journal = {Frontiers in physiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.942589}, pages = {10}, year = {2022}, abstract = {Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6-20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56\% of the running time achieved by the CTR (p < 0.0001), and at a 26\% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings.}, language = {en} } @article{VoelzkeStutzigThorhaueretal.2012, author = {Voelzke, Mathias and Stutzig, Norman and Thorhauer, Hans-Alexander and Granacher, Urs}, title = {Promoting lower extremity strength in elite volleyball players: Effects of two combined training methods}, series = {JOURNAL OF SCIENCE AND MEDICINE IN SPORT}, volume = {15}, journal = {JOURNAL OF SCIENCE AND MEDICINE IN SPORT}, number = {5}, publisher = {ELSEVIER SCI LTD}, address = {OXFORD}, issn = {1440-2440}, doi = {10.1016/j.jsams.2012.02.004}, pages = {457 -- 462}, year = {2012}, abstract = {Objectives: To compare the impact of short term training with resistance plus plyometric training (RT+P) or electromyostimulation plus plyometric training (EMS+P) on explosive force production in elite volleyball players. Design: Sixteen elite volleyball players of the first German division participated in a training study. Methods: The participants were randomly assigned to either the RT+P training group (n = 8) or the EMS+P training group (n= 8). Both groups participated in a 5-week lower extremity exercise program. Pre and post tests included squat jumps (Si), countermovement jumps (CMJ), and drop jumps (DJ) on a force plate. The three-step reach height (RH) was assessed using a custom-made vertec apparatus. Fifteen m straight and lateral sprint (S15s and S15l) were assessed using photoelectric cells with interims at 5 m and 10 m. Results: RT+P training resulted in significant improvements in Si (+2.3\%) and RH (+0.4\%) performance. The EMS+P training group showed significant increases in performance of CMJ (+3.8\%), DJ (+6.4\%), RH (+1.6\%), S15l (-3.8\%) and after 5 m and 10 m of the S15s (-2.6\%; -0.5\%). The comparison of training-induced changes between the two intervention groups revealed significant differences for the Si (p = 0.023) in favor of RT+P and for the S15s after 5 m (p = 0.006) in favor of EMS+P. Conclusions: The results indicate that RT+P training is effective in promoting jump performances and EMS+P training increases jump, speed and agility performances of elite volleyball players. (c) 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.}, language = {en} } @article{MuehlbauerStuerchlerGranacher2012, author = {M{\"u}hlbauer, Thomas and St{\"u}rchler, M. and Granacher, Urs}, title = {Effects of climbing on core strength and mobility in adults}, series = {International journal of sports medicine}, volume = {33}, journal = {International journal of sports medicine}, number = {6}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0031-1301312}, pages = {445 -- 451}, year = {2012}, abstract = {The objective of this study was to examine the impact of an indoor climbing training and detraining program on core/handgrip strength and trunk mobility in men and women. 28 young sedentary adults participated in this study and were assigned to an intervention (30+/-3 years) or a control (29+/-2 years) group. The intervention group participated in 8 weeks (2 times/week) of indoor climbing training, followed by 8 weeks of detraining. Tests included the measurement of maximal isometric strength (MIS) of the trunk flexors/extensors, the assessment of trunk mobility in the sagittal (SAP) and the coronal (CRP) plane as well as testing of handgrip strength. After training, significant improvements were observed in MIS of the trunk flexors/extensors (similar to 19-22 \%, all p<0.01), in trunk mobility in SAP/CRP (similar to 14-19 \%, all p<0.01), and in handgrip strength (similar to 5 \%, p<0.01). During detraining, MIS (similar to 12-13 \%, all p<0.01) and trunk mobility (similar to 7-10\%, all p<0.01) deteriorated significantly, whereas handgrip strength remained. This indoor climbing training program conducted in sedentary adults proved to be feasible (i.e., attendance rate of 89.4\%) and effective. It is suggested that indoor climbing should be permanently conducted to maintain the observed improvements in core muscle strength and trunk mobility.}, language = {en} } @article{MuehlbauerGollhoferGranacher2012, author = {M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Sex-related effects in strength training during adolescence a pilot study}, series = {Perceptual \& motor skills}, volume = {115}, journal = {Perceptual \& motor skills}, number = {3}, publisher = {Sage Publ.}, address = {Missoula}, issn = {0031-5125}, doi = {10.2466/06.10.30.PMS.115.6.953-968}, pages = {953 -- 968}, year = {2012}, abstract = {The objective was to investigate the effects of high-velocity strength training on isometric strength of the leg extensors and jump height in female and male adolescents. Twenty-eight students (13 boys, 15 girls) ages 16 to 17 years participated in this study and were assigned to either a strength training group or a control group. Strength training was conducted over 8 weeks (2 times per week). Pre- and post-training tests included the measurements of maximal isometric force and rate of force development of the leg extensors as well as countermovement jump height. Both girls (effect size = 1.37) and boys (effect size = 0.61) showed significant improvements in jump height. However, significant increases in maximal isometric force (effect size = 1.85) and rate of force development (effect size = 2.23) were found only in girls. In female and male adolescents, high-velocity strength training is an effective training regimen that produced improvements in countermovement jump height in both sexes but higher gains in maximal isometric force and rate of force development in girls.}, language = {en} } @article{LesinskiMuehlbauerBueschetal.2013, author = {Lesinski, Melanie and M{\"u}hlbauer, Thomas and Buesch, Dirk and Granacher, Urs}, title = {Acute Effects of Postactivation Potentiation on Strength and Speed Performance in Athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {27}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0033-1335414}, pages = {147 -- 155}, year = {2013}, abstract = {Background: The contractile history of a muscle or a muscle group can result in an acute enhancement of subsequent muscle force output. This phenomenon is referred to as postactivation potentiation (PAP) and it was frequently substantiated in original research manuscripts, systematic literature reviews, and meta-analyses. However, there is a lack in the literature regarding precise dose-response relations. This literature review describes the main determinants of PAP effects and additionally presents the state of the art regarding the acute effects of PAP protocols on measures of strength, power, and speed in subelite and elite athletes of different sport disciplines. Furthermore, an attempt is made to demonstrate evidence-based information concerning the design of effective PAP protocols. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Google Scholar (1995 - March 2013). In total, 23 studies met the inclusionary criteria for review. Results: Findings from our literature review indicate that various conditioning activities produce acute PAP effects in subelite and particularly elite athletes. More specifically, conditioning activities that are characterised by multiple sets, moderate to high intensities (60 - 84 \% of the one repetition maximum), and rest intervals of 7 - 10 min. following the conditioning activity have the potential to induce short-term improvements in muscle force output and sports performance. Conclusion: It is recommended that subelite and particularly elite athletes from strength, power, and speed disciplines apply specifically tailored conditioning activities during the acute preparation process for competition to induce performance enhancing PAP effects.}, language = {de} } @article{MuehlbauerGollhoferGranacher2013, author = {M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Association of balance, strength, and power measures in young adults}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {27}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {3}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1097/JSC.0b013e31825c2bab}, pages = {582 -- 589}, year = {2013}, abstract = {Muehlbauer, T, Gollhofer, A, and Granacher, U. Association of balance, strength, and power measures in young adults. J Strength Cond Res 27(3): 582-589, 2013-The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 6 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to + 0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to + 0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p, 0.05). Furthermore, simple regression analyses revealed that a 10\% increase in mean CMJ height (4.1 cm) was associated with 22.9 N.m and 128.4 N.m.s(-1) better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily.}, language = {en} } @article{MuehlbauerKuehnenGranacher2013, author = {M{\"u}hlbauer, Thomas and K{\"u}hnen, Matthias and Granacher, Urs}, title = {Inline skating for balance and strength promotion in children during physical education}, series = {Perceptual \& motor skills}, volume = {117}, journal = {Perceptual \& motor skills}, number = {3}, publisher = {Sage Publ.}, address = {Missoula}, issn = {0031-5125}, doi = {10.2466/30.06.PMS.117x29z9}, pages = {665 -- 681}, year = {2013}, abstract = {Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48\%, Cohen's d = 0.00-1.49) and jump height (8\%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90\% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength.}, language = {en} } @article{ChaabenePrieskeNegraetal.2018, author = {Chaabene, Helmi and Prieske, Olaf and Negra, Yassine and Granacher, Urs}, title = {Change of direction speed}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {8}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0907-3}, pages = {1773 -- 1779}, year = {2018}, abstract = {There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate-to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small-to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to enhance sport-specific performance. Future comparative studies are needed to deepen our knowledge of the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes.}, language = {en} } @article{HelmPrieskeMuehlbaueretal.2020, author = {Helm, Norman and Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Retzlaff, Matthias and Granacher, Urs}, title = {Associations between trunk muscle strength and judo-specific pulling performances in judo athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {34}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/a-0677-9608}, pages = {18 -- 27}, year = {2020}, abstract = {Background: Good trunk stability is an important prerequisite for the mobility of the upper and lower limbs during sport-specific movements. Therefore, trunk muscle strength may represent an important performance determinant for judo-specific movements. This study aimed at evaluating statistical correlations between trunk muscle strength and kinetic parameters during judo-specific pulling movements in judo players. Method: Twenty-one male sub-elite judo players aged 22 +/- 4 years with a mean training volume of 15 +/- 4 hours per week participated in this study. Peak isokinetic torque (PIT) of the trunk flexors (PITFlex), extensors (PITEx) and rotators (PITRot) was tested using an isokinetic dynamometer (IsoMed 2000). In addition, two kinetic parameters (mechanical work [W], maximal force [F-max]) were analysed using the judo-specific measurement and information system JERGo (c). For this purpose, athletes were asked to do their judo-specific pulling movements while standing and with a dynamic change of position (i.e. Morote-seoi-nage). Results: Regarding pulling movements while standing, significant correlations (0.62 <= r(P) <= 0.72) were found between isokinetic tests (PITFlex, PITEx, PITRot) and mechanical work during judo-specific movement. Further, significant correlations (0.59 <= r(P) <= 0.65) were detected between isokinetic tests (PITEx, PITRot) and judo-specific pulling movements (Fmax). Regarding pulling movements with a change of position, significant correlations (0.47 <= r(P) <= 0.88) were observed between isokinetics (PITFlex, PITEx, PITRot) and the kinetic pulling parameters (W, Fmax), irrespective of the examined arm. No significant differences in magnitude of correlation coefficients were found between PIT of the trunk flexors, extensors, and rotators and judo-specific movements. Further, the regression analysis indicated that PIT of the trunk extensors is the single best predictor for mechanical work during pulling movements while standing (46.9 \%). Trunk rotator PIT is the single best predictor for mechanical work during pulling movements with a change of position (69.4 \%). Conclusions: Findings from this study indicate that trunk muscle strength, particularly trunk rotator PIT is associated with kinetic pulling variables during pulling movements with a change of position. This implies that the development of trunk rotator strength could have an impact on pulling movements with a change of position (i.e. Morote-seoi-nage) in judo athletes.}, language = {de} } @misc{MoranRamirezCampilloGranacher2018, author = {Moran, Jason and Ramirez-Campillo, Rodrigo and Granacher, Urs}, title = {Effects of Jumping Exercise on Muscular Power in Older Adults}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {12}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-1002-5}, pages = {2843 -- 2857}, year = {2018}, abstract = {Background Jump training (JT) can be used to enhance the ability of skeletal muscle to exert maximal force in as short a time as possible. Despite its usefulness as a method of performance enhancement in athletes, only a small number of studies have investigated its effects on muscle power in older adults. Objectives The aims of this meta-analysis were to measure the effect of JT on muscular power in older adults (≥ 50 years), and to establish appropriate programming guidelines for this population. Data Sources The data sources utilised were Google Scholar, PubMed, and Microsoft Academic. Study Eligibility Criteria Studies were eligible for inclusion if they comprised JT interventions in healthy adults (≥ 50 years) who were free of any medical condition that could impair movement. Study Appraisal and Synthesis Methods The inverse variance random-effects model for meta-analyses was used because it allocates a proportionate weight to trials based on the size of their individual standard errors and facilitates analysis while accounting for heterogeneity across studies. Effect sizes (ESs), calculated from a measure of muscular power, were represented by the standardised mean difference and were presented alongside 95\% confidence intervals (CIs). Results Thirteen training groups across nine studies were included in this meta-analysis. The magnitude of the main effect was 'moderate' (0.66, 95\% CI 0.33, 0.98). ESs were larger in non-obese participants (body mass index [BMI] < 30 vs. ≥ 30 kg/m2; 1.03 [95\% CI 0.34, 1.73] vs. 0.53 [95\% CI - 0.03, 1.09]). Among the studies included in this review, just one reported an acute injury, which did not result in the participant ceasing their involvement. JT was more effective in programmes with more than one exercise (range 1-4 exercises; ES = 0.74 [95\% CI - 0.49, 1.96] vs. 0.53 [95\% CI 0.29, 0.78]), more than two sets per exercise (range 1-4 sets; ES = 0.91 [95\% CI 0.04, 1.77] vs. 0.68 [95\% CI 0.15, 1.21]), more than three jumps per set (range 1-14 jumps; ES = 1.02 [95\% CI 0.16, 1.87] vs. 0.53 [95\% CI - 0.03, 1.09]) and more than 25 jumps per session (range 6-200 jumps; ES = 0.88 [95\% CI 0.05, 1.70] vs. 0.49 [95\% CI 0.14, 0.83]). Conclusions JT is safe and effective in older adults. Practitioners should construct varied JT programmes that include more than one exercise and comprise more than two sets per exercise, more than three jumps per set, and 60 s of recovery between sets. An upper limit of three sets per exercise and ten jumps per set is recommended. Up to three training sessions per week can be performed.}, language = {en} } @article{ThielePrieskeLesinskietal.2020, author = {Thiele, Dirk and Prieske, Olaf and Lesinski, Melanie and Granacher, Urs}, title = {Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00888}, pages = {12}, year = {2020}, abstract = {Strength training is an important means for performance development in young rowers. The purpose of this study was to examine the effects of a 9-week equal volume heavy-resistance strength training (HRST) versus strength endurance training (SET) in addition to regular rowing training on primary (e.g., maximal strength/power) and secondary outcomes (e.g., balance) in young rowers. Twenty-six female elite adolescent rowers were assigned to an HRST (n = 12; age: 13.2 ± 0.5 yrs; maturity-offset: +2.0 ± 0.5 yrs) or a SET group (n = 14; age: 13.1 ± 0.5 yrs; maturity-offset: +2.1 ± 0.5 yrs). HRST and SET comprised lower- (i.e., leg press/knee flexion/extension), upper-limbs (i.e., bench press/pull; lat-pull down), and complex exercises (i.e., rowing ergometer). HRST performed four sets with 12 repetitions per set at an intensity of 75-95\% of the one-repetition maximum (1-RM). SET conducted four sets with 30 repetitions per set at 50-60\% of the 1-RM. Training volume was matched for overall repetitions × intensity × training per week. Pre-post training, tests were performed for the assessment of primary [i.e., maximal strength (e.g., bench pull/knee flexion/extension 1-RM/isometric handgrip test), muscle power (e.g., medicine-ball push test, triple hop, drop jump, and countermovement jump), anaerobic endurance (400-m run), sport-specific performance (700-m rowing ergometer trial)] and secondary outcomes [dynamic balance (Y-balance test), change-of-direction (CoD) speed (multistage shuttle-run test)]. Adherence rate was >87\% and one athlete of each group dropped out. Overall, 24 athletes completed the study and no test or training-related injuries occurred. Significant group × time interactions were observed for maximal strength, muscle power, anaerobic endurance, CoD speed, and sport-specific performance (p ≤ 0.05; 0.45 ≤ d ≤ 1.11). Post hoc analyses indicated larger gains in maximal strength and muscle power following HRST (p ≤ 0.05; 1.81 ≤ d ≤ 3.58) compared with SET (p ≤ 0.05; 1.04 ≤ d ≤ 2.30). Furthermore, SET (p ≤ 0.01; d = 2.08) resulted in larger gains in sport-specific performance compared with HRST (p < 0.05; d = 1.3). Only HRST produced significant pre-post improvements for anaerobic endurance and CoD speed (p ≤ 0.05; 1.84 ≤ d ≤ 4.76). In conclusion, HRST in addition to regular rowing training was more effective than SET to improve selected measures of physical fitness (i.e., maximal strength, muscle power, anaerobic endurance, and CoD speed) and SET was more effective than HRST to enhance sport-specific performance gains in female elite young rowers.}, language = {en} } @article{ChaabeneLesinskiBehmetal.2020, author = {Chaabene, Helmi and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Performance- and healthrelated benefits of youth resistance training}, series = {Sports Orthopaedics and Traumatology}, volume = {36}, journal = {Sports Orthopaedics and Traumatology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, pages = {10}, year = {2020}, abstract = {Performance- and healthrelated benefits of yoThere is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths' exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.uth resistance training}, language = {en} } @article{SlimaniParavlicGranacher2018, author = {Slimani, Maamer and Paravlic, Armin and Granacher, Urs}, title = {A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01155}, pages = {1 -- 14}, year = {2018}, abstract = {It is well-documented that strength training (ST) improves measures of muscle strength in young athletes. Less is known on transfer effects of ST on proxies of muscle power and the underlying dose-response relationships. The objectives of this meta-analysis were to quantify the effects of ST on lower limb muscle power in young athletes and to provide dose-response relationships for ST modalities such as frequency, intensity, and volume. A systematic literature search of electronic databases identified 895 records. Studies were eligible for inclusion if (i) healthy trained children (girls aged 6-11 y, boys aged 6-13 y) or adolescents (girls aged 12-18 y, boys aged 14-18 y) were examined, (ii) ST was compared with an active control, and (iii) at least one proxy of muscle power [squat jump (SJ) and countermovement jump height (CMJ)] was reported. Weighted mean standardized mean differences (SMDwm) between subjects were calculated. Based on the findings from 15 statistically aggregated studies, ST produced significant but small effects on CMJ height (SMDwm = 0.65; 95\% CI 0.34-0.96) and moderate effects on SJ height (SMDwm = 0.80; 95\% CI 0.23-1.37). The sub-analyses revealed that the moderating variable expertise level (CMJ height: p = 0.06; SJ height: N/A) did not significantly influence ST-related effects on proxies of muscle power. "Age" and "sex" moderated ST effects on SJ (p = 0.005) and CMJ height (p = 0.03), respectively. With regard to the dose-response relationships, findings from the meta-regression showed that none of the included training modalities predicted ST effects on CMJ height. For SJ height, the meta-regression indicated that the training modality "training duration" significantly predicted the observed gains (p = 0.02), with longer training durations (>8 weeks) showing larger improvements. This meta-analysis clearly proved the general effectiveness of ST on lower-limb muscle power in young athletes, irrespective of the moderating variables. Dose-response analyses revealed that longer training durations (>8 weeks) are more effective to improve SJ height. No such training modalities were found for CMJ height. Thus, there appear to be other training modalities besides the ones that were included in our analyses that may have an effect on SJ and particularly CMJ height. ST monitoring through rating of perceived exertion, movement velocity or force-velocity profile could be promising monitoring tools for lower-limb muscle power development in young athletes.}, language = {en} } @article{ChaabeneBehmNegraetal.2019, author = {Chaabene, Helmi and Behm, David George and Negra, Yassine and Granacher, Urs}, title = {Acute Effects of Static Stretching on Muscle Strength and Power}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01468}, pages = {8}, year = {2019}, abstract = {The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers' knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1-2\%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0-7.5\%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition.}, language = {en} } @article{NobariMahmoudzadehKhaliliDencheZamoranoetal.2022, author = {Nobari, Hadi and Mahmoudzadeh Khalili, Sara and Denche Zamorano, Angel Manuel and Bowman, ‪Thomas G. and Granacher, Urs}, title = {Workload is associated with the occurrence of non-contact injuries in professional male soccer players: A pilot study}, series = {Frontiers in Psychology}, journal = {Frontiers in Psychology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2022.925722}, pages = {1 -- 9}, year = {2022}, abstract = {Injuries in professional soccer are a significant concern for teams, and they are caused amongst others by high training load. This cohort study describes the relationship between workload parameters and the occurrence of non-contact injuries, during weeks with high and low workload in professional soccer players throughout the season. Twenty-one professional soccer players aged 28.3 ± 3.9 yrs. who competed in the Iranian Persian Gulf Pro League participated in this 48-week study. The external load was monitored using global positioning system (GPS, GPSPORTS Systems Pty Ltd) and the type of injury was documented daily by the team's medical staff. Odds ratio (OR) and relative risk (RR) were calculated for non-contact injuries for high- and low-load weeks according to acute (AW), chronic (CW), acute to chronic workload ratio (ACWR), and AW variation (Δ-Acute) values. By using Poisson distribution, the interval between previous and new injuries were estimated. Overall, 12 non-contact injuries occurred during high load and 9 during low load weeks. Based on the variables ACWR and Δ-AW, there was a significantly increased risk of sustaining non-contact injuries (p < 0.05) during high-load weeks for ACWR (OR: 4.67), and Δ-AW (OR: 4.07). Finally, the expected time between injuries was significantly shorter in high load weeks for ACWR [1.25 vs. 3.33, rate ratio time (RRT)] and Δ-AW (1.33 vs. 3.45, RRT) respectively, compared to low load weeks. The risk of sustaining injuries was significantly larger during high workload weeks for ACWR, and Δ-AW compared with low workload weeks. The observed high OR in high load weeks indicate that there is a significant relationship between workload and occurrence of non-contact injuries. The predicted time to new injuries is shorter in high load weeks compared to low load weeks. Therefore, the frequency of injuries is higher during high load weeks for ACWR and Δ-AW. ACWR and Δ-AW appear to be good indicators for estimating the injury risk, and the time interval between injuries.}, language = {en} }