@article{GenderjahnAlawiMangelsdorfetal.2018, author = {Genderjahn, Steffi and Alawi, Mashal and Mangelsdorf, Kai and Horn, Fabian and Wagner, Dirk}, title = {Desiccation- and saline-solerant bacteria and archaea in kalahari an sediments}, series = {Frontiers in microbiology}, volume = {9}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2018.02082}, pages = {15}, year = {2018}, abstract = {More than 41\% of the Earth's land area is covered by permanent or seasonally arid dryland ecosystems. Global development and human activity have led to an increase in aridity, resulting in ecosystem degradation and desertification around the world. The objective of the present work was to investigate and compare the microbial community structure and geochemical characteristics of two geographically distinct saline pan sediments in the Kalahari Desert of southern Africa. Our data suggest that these microbial communities have been shaped by geochemical drivers, including water content, salinity, and the supply of organic matter. Using Illumina 16S rRNA gene sequencing, this study provides new insights into the diversity of bacteria and archaea in semi-arid, saline, and low-carbon environments. Many of the observed taxa are halophilic and adapted to water-limiting conditions. The analysis reveals a high relative abundance of halophilic archaea (primarily Halobacteria), and the bacterial diversity is marked by an abundance of Gemmatimonadetes and spore-forming Firmicutes. In the deeper, anoxic layers, candidate division MSBL1, and acetogenic bacteria (Acetothermia) are abundant. Together, the taxonomic information and geochemical data suggest that acetogenesis could be a prevalent form of metabolism in the deep layers of a saline pan.}, language = {en} } @article{GenderjahnAlawiWagneretal.2018, author = {Genderjahn, Steffi and Alawi, Mashal and Wagner, Dirk and Schueller, I. and Wanke, A. and Mangelsdorf, Kai}, title = {Microbial community responses to modern environmental and Past Climatic Conditions in Omongwa Pan, Western Kalahari}, series = {Journal of geophysical research : Biogeosciences}, volume = {123}, journal = {Journal of geophysical research : Biogeosciences}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1002/2017JG004098}, pages = {1333 -- 1351}, year = {2018}, abstract = {Due to a lack of well-preserved terrestrial climate archives, paleoclimate studies are sparse in southwestern Africa. Because there are no perennial lacustrine systems in this region, this study relies on a saline pan as an archive for climate information in the western Kalahari (Namibia). Molecular biological and biogeochemical analyses were combined to examine the response of indigenous microbial communities to modern and past climate-induced environmental conditions. The 16S rRNA gene high-throughput sequencing was applied to sediment samples from Omongwa pan to characterize the modern microbial diversity. Highest diversity of microorganisms, dominated by the extreme halophilic archaeon Halobacteria and by the bacterial phylum Gemmatimonadetes, was detected in the near-surface sediments of Omongwa pan. In deeper sections abundance and diversity significantly decreases and Bacillus, known to form spores, become dominant. Lipid biomarkers for living and past microbial life were analyzed to track the influence of climate variation on the abundance of microbial communities from the Last Glacial Maximum to Holocene time. Since water is an inevitable requirement for microbial life, in this dry region the abundance of past microbial biomarkers was evaluated to conclude on periods of increased paleoprecipitation in the past. The data point to a period of increased humidity in the western Kalahari during the Last Glacial to Holocene transition indicating a southward shift of the Intertropical Convergence Zone during this period. Comparison with results from a southwestern Kalahari pan suggests complex displacements of the regional atmospheric systems since the Last Glacial Maximum.}, language = {en} } @misc{GenderjahnAlawiMangelsdorfetal.2018, author = {Genderjahn, Steffi and Alawi, Mashal and Mangelsdorf, Kai and Horn, Fabian and Wagner, Dirk}, title = {Desiccation- and saline-tolerant bacteria and archaea in Kalahari pan sediments}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {993}, issn = {1866-8372}, doi = {10.25932/publishup-45915}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459154}, pages = {17}, year = {2018}, abstract = {More than 41\% of the Earth's land area is covered by permanent or seasonally arid dryland ecosystems. Global development and human activity have led to an increase in aridity, resulting in ecosystem degradation and desertification around the world. The objective of the present work was to investigate and compare the microbial community structure and geochemical characteristics of two geographically distinct saline pan sediments in the Kalahari Desert of southern Africa. Our data suggest that these microbial communities have been shaped by geochemical drivers, including water content, salinity, and the supply of organic matter. Using Illumina 16S rRNA gene sequencing, this study provides new insights into the diversity of bacteria and archaea in semi-arid, saline, and low-carbon environments. Many of the observed taxa are halophilic and adapted to water-limiting conditions. The analysis reveals a high relative abundance of halophilic archaea (primarily Halobacteria), and the bacterial diversity is marked by an abundance of Gemmatimonadetes and spore-forming Firmicutes. In the deeper, anoxic layers, candidate division MSBL1, and acetogenic bacteria (Acetothermia) are abundant. Together, the taxonomic information and geochemical data suggest that acetogenesis could be a prevalent form of metabolism in the deep layers of a saline pan.}, language = {en} } @phdthesis{Genderjahn2018, author = {Genderjahn, Steffi}, title = {Biosignatures of Present and Past Microbial Life in Southern African Geoarchives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410110}, school = {Universit{\"a}t Potsdam}, pages = {XI, 166, xxii}, year = {2018}, abstract = {Global climate change is one of the greatest challenges of the 21st century, with influence on the environment, societies, politics and economies. The (semi-)arid areas of Southern Africa already suffer from water scarcity. There is a great variety of ongoing research related to global climate history but important questions on regional differences still exist. In southern African regions terrestrial climate archives are rare, which makes paleoclimate studies challenging. Based on the assumption that continental pans (sabkhas) represent a suitable geo-archive for the climate history, two different pans were studied in the southern and western Kalahari Desert. A combined approach of molecular biological and biogeochemical analyses is utilized to investigate the diversity and abundance of microorganisms and to trace temporal and spatial changes in paleoprecipitation in arid environments. The present PhD thesis demonstrates the applicability of pan sediments as a late Quaternary geo-archive based on microbial signature lipid biomarkers, such as archaeol, branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as well as phospholipid fatty acids (PLFA). The microbial signatures contained in the sediment provide information on the current or past microbial community from the Last Glacial Maximum to the recent epoch, the Holocene. The results are discussed in the context of regional climate evolution in southwestern Africa. The seasonal shift of the Innertropical Convergence Zone (ITCZ) along the equator influences the distribution of precipitation- and climate zones. The different expansion of the winter- and summer rainfall zones in southern Africa was confirmed by the frequency of certain microbial biomarkers. A period of increased precipitation in the south-western Kalahari could be described as a result of the extension of the winter rainfall zone during the last glacial maximum (21 ± 2 ka). Instead a period of increased paleoprecipitation in the western Kalahari was indicated during the Late Glacial to Holocene transition. This was possibly caused by a southwestern shift in the position of the summer rainfall zone associated to the southward movement of the ITCZ. Furthermore, for the first time this study characterizes the bacterial and archaeal life based on 16S rRNA gene high-throughput sequencing in continental pan sediments and provides an insight into the recent microbial community structure. Near-surface processes play an important role for the modern microbial ecosystem in the pans. Water availability as well as salinity might determine the abundance and composition of the microbial communities. The microbial community of pan sediments is dominated by halophilic and dry-adapted archaea and bacteria. Frequently occurring microorganisms such as, Halobacteriaceae, Bacillus and Gemmatimonadetes are described in more detail in this study.}, language = {en} }