@article{HuangvanHinsbergenDekkersetal.2015, author = {Huang, Wentao and van Hinsbergen, Douwe J. J. and Dekkers, Mark J. and Garzanti, Eduardo and Dupont-Nivet, Guillaume and Lippert, Peter C. and Li, Xiaochun and Maffione, Marco and Langereis, Cor G. and Hu, Xiumian and Guo, Zhaojie and Kapp, Paul}, title = {Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks}, series = {Geochemistry, geophysics, geosystems}, volume = {16}, journal = {Geochemistry, geophysics, geosystems}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2014GC005624}, pages = {77 -- 100}, year = {2015}, abstract = {The Tibetan Himalaya represents the northernmost continental unit of the Indian plate that collided with Asia in the Cenozoic. Paleomagnetic studies on the Tibetan Himalaya can help constrain the dimension and paleogeography of "Greater India,' the Indian plate lithosphere that subducted and underthrusted below Asia after initial collision. Here we present a paleomagnetic investigation of a Jurassic (limestones) and Lower Cretaceous (volcaniclastic sandstones) section of the Tibetan Himalaya. The limestones yielded positive fold test, showing a prefolding origin of the isolated remanent magnetizations. Detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic investigation reveal that the magnetic carrier of the Jurassic limestones is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic sandstones is detrital magnetite. Our observations lead us to conclude that the Jurassic limestones record a prefolding remagnetization, whereas the Lower Cretaceous volcaniclastic sandstones retain a primary remanence. The volcaniclastic sandstones yield an Early Cretaceous paleolatitude of 55.5 degrees S [52.5 degrees S, 58.6 degrees S] for the Tibetan Himalaya, suggesting it was part of the Indian continent at that time. The size of "Greater India' during Jurassic time cannot be estimated from these limestones. Instead, a paleolatitude of the Tibetan Himalaya of 23.8 degrees S [21.8 degrees S, 26.1 degrees S] during the remagnetization process is suggested. It is likely that the remagnetization, caused by the oxidation of early diagenetic pyrite to magnetite, was induced during 103-83 or 77-67 Ma. The inferred paleolatitudes at these two time intervals imply very different tectonic consequences for the Tibetan Himalaya.}, language = {en} } @article{BloetheMunackKorupetal.2014, author = {Bloethe, Jan H. and Munack, Henry and Korup, Oliver and Fuelling, Alexander and Garzanti, Eduardo and Resentini, Alberto and Kubik, Peter W.}, title = {Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {94}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.04.011}, pages = {102 -- 119}, year = {2014}, abstract = {The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr(-1). Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic Be-10, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before similar to 200 ka and similar to 50-20 ka, judging from terrace treads stranded >150 m and similar to 30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a lateor post-glacial sediment pulse seems a more likely source of this widespread sedimentation that has partly buried the dissected bedrock topography. Overall, the long residence times of fluvial, alluvial and lacustrine deposits in the region (>500 ka) support previous studies, but remain striking given the dominantly steep slopes and deeply carved valleys that characterise this high-altitude mountain desert. Recalculated late Quaternary rates of fluvial bedrock incision in the Indus and Zanskar of 1.5 +/- 0.2 mm yr(-1) are at odds with the longevity of juxtaposed valley-fill deposits, unless a lack of decisive lateral fluvial erosion helps to preserve these late Pleistocene sedimentary archives. We conclude that alternating, similar to 10(4)-yr long, phases of massive infilling and incision have dominated the late Quaternary history of the Indus valley below the western Tibetan Plateau margin. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MunackKorupResentinietal.2014, author = {Munack, Henry and Korup, Oliver and Resentini, Alberto and Limonta, Mara and Garzanti, Eduardo and Bloethe, Jan H. and Scherler, Dirk and Wittmann, Hella and Kubik, Peter W.}, title = {Postglacial denudation of western Tibetan Plateau margin outpaced by long-term exhumation}, series = {Geological Society of America bulletin}, volume = {126}, journal = {Geological Society of America bulletin}, number = {11-12}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30979.1}, pages = {1580 -- 1594}, year = {2014}, abstract = {The Indus River, one of Asia's premier rivers, drains the western Tibetan Plateau and the Nanga Parbat syntaxis. These two areas juxtapose some of the lowest and highest topographic relief and commensurate denudation rates in the Himalaya-Tibet orogen, respectively, yet the spatial pattern of denudation rates upstream of the syntaxis remains largely unclear, as does the way in which major rivers drive headward incision into the Tibetan Plateau. We report a new inventory of Be-10-based basinwide denudation rates from 33 tributaries flanking the Indus River along a 320 km reach across the western Tibetan Plateau margin. We find that denudation rates of up to 110 mm k.y.(-1) in the Ladakh and Zanskar Ranges systematically decrease eastward to 10 mm k.y.(-1) toward the Tibetan Plateau. Independent results from bulk petrographic and heavy mineral analyses support this denudation gradient. Assuming that incision along the Indus exerts the base-level control on tributary denudation rates, our data show a systematic eastward decrease of landscape downwearing, reaching its minimum on the Tibetan Plateau. In contrast, denudation rates increase rapidly 150-200 km downstream of a distinct knick-point that marks the Tibetan Plateau margin in the Indus River longitudinal profile. We infer that any vigorous headward incision and any accompanying erosional waves into the interior of the plateau mostly concerned reaches well below this plateau margin. Moreover, reported long-term (>10(6) yr) exhumation rates from low-temperature chronometry of 0.1-0.75 mm yr(-1) consistently exceed our Be-10-derived denudation rates. With averaging time scales of 10(3)-10(4) yr for our denudation data, we report postglacial rates of downwearing in a tectonically idle landscape. To counterbalance this apparent mismatch, denudation rates must have been higher in the Quaternary during glacial-interglacial intervals.}, language = {en} } @article{ZhangNajmanMeietal.2019, author = {Zhang, Peng and Najman, Yani and Mei, Lianfu and Millar, Ian and Sobel, Edward and Carter, Andrew and Barfod, Dan and Dhuime, Bruno and Garzanti, Eduardo and Govin, Gwladys and Vezzoli, Giovanni and Hu, Xiaolin}, title = {Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics}, series = {Earth science reviews}, volume = {192}, journal = {Earth science reviews}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2019.02.003}, pages = {601 -- 630}, year = {2019}, abstract = {A number of sedimentary provenance studies have been undertaken in order to determine whether the palaeo-Red River was once a river of continental proportions into which the upper reaches of the Yangtze, Salween, Mekong, Irrawaddy, and Yarlung drained. We have assessed the evidence that the Yarlung originally flowed into the palaeo-Red river, and then sequentially into the Irrawaddy and Brahmaputra, connecting to the latter first via the Lohit and then the Siang. For this river system, we have integrated our new data from the Paleogene-Recent Irrawaddy drainage basin (detrital zircon U-Pb with Hf and fission track, rutile U-Pb, mica Ar-Ar, bulk rock Sr-Nd, and petrography) with previously published data, to produce a palaeodrainage model that is consistent with all datasets. In our model, the Yarlung never flowed into the Irrawaddy drainage: during the Paleogene, the Yarlung suture zone was an internally drained basin, and from Neogene times onwards the Yarlung drained into the Brahmaputra in the Bengal Basin. The Central Myanmar Basin, through which the Irrawaddy River flows today, received predominantly locally-derived detritus until the Middle Eocene, the Irrawaddy initiated as a through-going river draining the Mogok Metamorphic Belt and Bomi-Chayu granites to the north sometime in the Late Eocene to Early Oligocene, and the river was dominated by a stable MMB-dominated drainage throughout the Neogene to present day. Existing evidence does not support any connection between the Yarlung and the Red River in the past, but there is a paucity of suitable palaeo-Red River deposits with which to make a robust comparison. We argue that this limitation also precludes a robust assessment of a palaeo-connection between the Yangtze/ Salween/Mekong and the Red River; it is difficult to unequivocally interpret the recorded provenance changes as the result of specific drainage reorganisations. We highlight the palaeo-Red River deposits of the Hanoi Basin as a potential location for future research focus in view of the near-complete Cenozoic record of palaeo-Red River deposits at this location. A majority of previous studies consider that if a major continental-scale drainage ever existed at all, it fragmented early in the Cenozoic. Such a viewpoint would agree with the growing body of evidence from palaeoaltitude studies that large parts of SE Tibet were uplifted by this period. This then leads towards the intriguing question as to the mechanisms which caused the major period of river incision in the Miocene in this region.}, language = {en} } @article{BlayneyNajmanDupontNivetetal.2016, author = {Blayney, Tamsin and Najman, Yani and Dupont-Nivet, Guillaume and Carter, Andrew and Millar, Ian and Garzanti, Eduardo and Sobel, Edward and Rittner, Martin and Ando, Sergio and Guo, Zhaojie and Vezzoli, Giovanni}, title = {Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record}, series = {Tectonics}, volume = {35}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2016TC004222}, pages = {2345 -- 2369}, year = {2016}, abstract = {The Pamirs represent the indented westward continuation of the northern margin of the Tibetan Plateau, dividing the Tarim and Tajik basins. Their evolution may be a key factor influencing aridification of the Asian interior, yet the tectonics of the Pamir Salient are poorly understood. We present a provenance study of the Aertashi section, a Paleogene to late Neogene clastic succession deposited in the Tarim basin to the north of the NW margin of Tibet (the West Kunlun) and to the east of the Pamirs. Our detrital zircon U-Pb ages coupled with zircon fission track, bulk rock Sm-Nd, and petrography data document changes in contributing source terranes during the Oligocene to Miocene, which can be correlated to regional tectonics. We propose a model for the evolution of the Pamir and West Kunlun (WKL), in which the WKL formed topography since at least similar to 200 Ma. By similar to 25 Ma, movement along the Pamir-bounding faults such as the Kashgar-Yecheng Transfer System had commenced, marking the onset of Pamir indentation into the Tarim-Tajik basin. This is coincident with basinward expansion of the northern WKL margin, which changed the palaeodrainage pattern within the Kunlun, progressively cutting off the more southerly WKL sources from the Tarim basin. An abrupt change in the provenance and facies of sediments at Aertashi has a maximum age of 14 Ma; this change records when the Pamir indenter had propagated sufficiently far north that the North Pamir was now located proximal to the Aertashi region.}, language = {en} }