@article{ZwiebackKokeljGuentheretal.2018, author = {Zwieback, Simon and Kokelj, Steven V. and G{\"u}nther, Frank and Boike, Julia and Grosse, Guido and Hajnsek, Irena}, title = {Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-12-549-2018}, pages = {549 -- 564}, year = {2018}, abstract = {Predicting future thaw slump activity requires a sound understanding of the atmospheric drivers and geomorphic controls on mass wasting across a range of timescales. On sub-seasonal timescales, sparse measurements indicate that mass wasting at active slumps is often limited by the energy available for melting ground ice, but other factors such as rainfall or the formation of an insulating veneer may also be relevant. To study the sub-seasonal drivers, we derive topographic changes from single-pass radar interferometric data acquired by the TanDEM-X satellites. The estimated elevation changes at 12m resolution complement the commonly observed planimetric retreat rates by providing information on volume losses. Their high vertical precision (around 30 cm), frequent observations (11 days) and large coverage (5000 km(2)) allow us to track mass wasting as drivers such as the available energy change during the summer of 2015 in two study regions. We find that thaw slumps in the Tuktoyaktuk coastlands, Canada, are not energy limited in June, as they undergo limited mass wasting (height loss of around 0 cm day 1) despite the ample available energy, suggesting the widespread presence of early season insulating snow or debris veneer. Later in summer, height losses generally increase (around 3 cm day 1), but they do so in distinct ways. For many slumps, mass wasting tracks the available energy, a temporal pattern that is also observed at coastal yedoma cliffs on the Bykovsky Peninsula, Russia. However, the other two common temporal trajectories are asynchronous with the available energy, as they track strong precipitation events or show a sudden speed-up in late August respectively. The observed temporal patterns are poorly related to slump characteristics like the headwall height. The contrasting temporal behaviour of nearby thaw slumps highlights the importance of complex local and temporally varying controls on mass wasting.}, language = {en} } @article{FuchsGrosseStraussetal.2018, author = {Fuchs, Matthias and Grosse, Guido and Strauss, Jens and G{\"u}nther, Frank and Grigoriev, Mikhail N. and Maximov, Georgy M. and Hugelius, Gustaf}, title = {Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia}, series = {Biogeosciences}, volume = {15}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-15-953-2018}, pages = {953 -- 971}, year = {2018}, abstract = {Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes - on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m(-2) and 1.8 kg N m(-2) and for Bykovsky Peninsula 25.9 kg C m(-2) and 2.2 kg N m(-2). Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holoceneage cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10-0.57 mm yr(-1) suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by similar to 5.8 Tg (13.2 kg C m(-2)). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.}, language = {en} } @misc{FuchsGrosseStraussetal.2018, author = {Fuchs, Matthias and Grosse, Guido and Strauss, Jens and G{\"u}nther, Frank and Grigoriev, Mikhail N. and Maximov, Georgy M. and Hugelius, Gustaf}, title = {Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {15}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {654}, issn = {1866-8372}, doi = {10.25932/publishup-41802}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418026}, pages = {19}, year = {2018}, abstract = {Ice-rich yedoma-dominated landscapes store con- siderable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes - on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and anal- ysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced under- standing of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m -2 and 1.8 kg N m -2 and for Bykovsky Penin- sula 25.9 kg C m -2 and 2.2 kg N m -2 . Radiocarbon dating demonstrates the Holocene age of thermokarst basin de- posits but also suggests the presence of thick Holocene- age cover layers which can reach up to 2 m on top of in- tact yedoma landforms. Reconstructed sedimentation rates of 0.10-0.57 mm yr -1 suggest sustained mineral soil accu- mulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumu- lation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a sea- sonally thawed state in the two study areas by ∼ 5.8 Tg (13.2 kg C m -2 ). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice- rich yedoma and thermokarst environments in order to ac- count for high variability of permafrost and thermokarst en- vironments in pan-permafrost soil C and N pool estimates.}, language = {en} } @misc{ZwiebackKokeljGuentheretal.2018, author = {Zwieback, Simon and Kokelj, Steven V. and G{\"u}nther, Frank and Boike, Julia and Grosse, Guido and Hajnsek, Irena}, title = {Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {926}, issn = {1866-8372}, doi = {10.25932/publishup-44568}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445688}, pages = {549 -- 564}, year = {2018}, abstract = {Predicting future thaw slump activity requires a sound understanding of the atmospheric drivers and geomorphic controls on mass wasting across a range of timescales. On sub-seasonal timescales, sparse measurements indicate that mass wasting at active slumps is often limited by the energy available for melting ground ice, but other factors such as rainfall or the formation of an insulating veneer may also be relevant. To study the sub-seasonal drivers, we derive topographic changes from single-pass radar interferometric data acquired by the TanDEM-X satellites. The estimated elevation changes at 12m resolution complement the commonly observed planimetric retreat rates by providing information on volume losses. Their high vertical precision (around 30 cm), frequent observations (11 days) and large coverage (5000 km(2)) allow us to track mass wasting as drivers such as the available energy change during the summer of 2015 in two study regions. We find that thaw slumps in the Tuktoyaktuk coastlands, Canada, are not energy limited in June, as they undergo limited mass wasting (height loss of around 0 cm day 1) despite the ample available energy, suggesting the widespread presence of early season insulating snow or debris veneer. Later in summer, height losses generally increase (around 3 cm day 1), but they do so in distinct ways. For many slumps, mass wasting tracks the available energy, a temporal pattern that is also observed at coastal yedoma cliffs on the Bykovsky Peninsula, Russia. However, the other two common temporal trajectories are asynchronous with the available energy, as they track strong precipitation events or show a sudden speed-up in late August respectively. The observed temporal patterns are poorly related to slump characteristics like the headwall height. The contrasting temporal behaviour of nearby thaw slumps highlights the importance of complex local and temporally varying controls on mass wasting.}, language = {en} } @article{ChenGuentherGrosseetal.2018, author = {Chen, Jie and G{\"u}nther, Frank and Grosse, Guido and Liu, Lin and Lin, Hui}, title = {Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10071152}, pages = {16}, year = {2018}, abstract = {Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations.}, language = {en} } @article{WetterichSchirrmeisteNazarovaetal.2018, author = {Wetterich, Sebastian and Schirrmeiste, Lutz and Nazarova, Larisa B. and Palagushkina, Olga and Bobrov, Anatoly and Pogosyan, Lilit and Savelieva, Larisa and Syrykh, Liudmila and Matthes, Heidrun and Fritz, Michael and G{\"u}nther, Frank and Opel, Thomas and Meyer, Hanno}, title = {Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia)}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1979}, pages = {182 -- 198}, year = {2018}, abstract = {Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene.}, language = {en} } @article{FuchsLenzJocketal.2019, author = {Fuchs, Matthias and Lenz, Josefine and Jock, Suzanne and Nitze, Ingmar and Jones, Benjamin M. and Strauss, Jens and G{\"u}nther, Frank and Grosse, Guido}, title = {Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska}, series = {Journal of geophysical research : Biogeosciences}, volume = {124}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2018JG004591}, pages = {1230 -- 1247}, year = {2019}, abstract = {Thermokarst lake landscapes are permafrost regions, which are prone to rapid (on seasonal to decadal time scales) changes, affecting carbon and nitrogen cycles. However, there is a high degree of uncertainty related to the balance between carbon and nitrogen cycling and storage. We collected 12 permafrost soil cores from six drained thermokarst lake basins (DTLBs) along a chronosequence north of Teshekpuk Lake in northern Alaska and analyzed them for carbon and nitrogen contents. For comparison, we included three lacustrine cores from an adjacent thermokarst lake and one soil core from a non thermokarst affected remnant upland. This allowed to calculate the carbon and nitrogen stocks of the three primary landscape units (DTLB, lake, and upland), to reconstruct the landscape history, and to analyze the effect of thermokarst lake formation and drainage on carbon and nitrogen stocks. We show that carbon and nitrogen contents and the carbon-nitrogen ratio are considerably lower in sediments of extant lakes than in the DTLB or upland cores indicating degradation of carbon during thermokarst lake formation. However, we found similar amounts of total carbon and nitrogen stocks due to the higher density of lacustrine sediments caused by the lack of ground ice compared to DTLB sediments. In addition, the radiocarbon-based landscape chronology for the past 7,000years reveals five successive lake stages of partially, spatially overlapping DTLBs in the study region, reflecting the dynamic nature of ice-rich permafrost deposits. With this study, we highlight the importance to include these dynamic landscapes in future permafrost carbon feedback models. Plain Language Summary When permanently frozen soils (permafrost) contain ice-rich sediments, the thawing of this permafrost causes the surface to sink, which may result in lake formation. This process, the thaw of ice-rich permafrost and melting of ground ice leads to characteristic landforms-known as thermokarst. Once such a thaw process is initiated in ice-rich sediments, a thaw lake forms and grows by shoreline erosion, eventually expanding until a drainage pathway is encountered and the lake eventually drains, resulting in a drained thermokarst lake basin. In our study, we show that such a thermokarst-affected landscape north of Teshekpuk Lake in northern Alaska is shaped by repeated thaw lake formation and lake drainage events during the past 7,000years, highlighting the dynamic nature of these landscapes. These landscape-scale processes have a big effect on the carbon and nitrogen stored in permafrost soils. We show that large amounts of carbon (>45kg C/m(2)) and nitrogen (>2.6kg N/m(2)) are stored in unfrozen lake sediments and in frozen soil sediments. The findings are important when considering the potential effect that permafrost thaw has for the global climate through releasing carbon and nitrogen, which was frozen and therefore locked away for millennia, from the active carbon cycle.}, language = {en} } @phdthesis{Guenther2013, author = {G{\"u}nther, Frank}, title = {Thermo-erosion of permafrost coasts in East Siberia}, address = {Potsdam}, pages = {125 S.}, year = {2013}, language = {en} } @misc{ChenGuentherGrosseetal.2018, author = {Chen, Jie and G{\"u}nther, Frank and Grosse, Guido and Liu, Lin and Lin, Hui}, title = {Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {690}, issn = {1866-8372}, doi = {10.25932/publishup-42680}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426807}, pages = {16}, year = {2018}, abstract = {Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations.}, language = {en} } @article{IrrgangLantuitMansonetal.2018, author = {Irrgang, Anna Maria and Lantuit, Hugues and Manson, Gavin K. and G{\"u}nther, Frank and Grosse, Guido and Overduin, Pier Paul}, title = {Variability in rates of coastal change along the Yukon Coast, 1951 to 2015}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004326}, pages = {779 -- 800}, year = {2018}, abstract = {To better understand the reaction of Arctic coasts to increasing environmental pressure, coastal changes along a 210-km length of the Yukon Territory coast in north-west Canada were investigated. Shoreline positions were acquired from aerial and satellite images between 1951 and 2011. Shoreline change rates were calculated for multiple time periods along the entire coast and at six key sites. Additionally, Differential Global Positioning System (DGPS) measurements of shoreline positions from seven field sites were used to analyze coastal dynamics from 1991 to 2015 at higher spatial resolution. The whole coast has a consistent, spatially averaged mean rate of shoreline change of 0.7 +/- 0.2 m/a with a general trend of decreasing erosion from west to east. Additional data from six key sites shows that the mean shoreline change rate decreased from -1.3 +/- 0.8 (1950s-1970s) to -0.5 +/- 0.6 m/a (1970s-1990s). This was followed by a significant increase in shoreline change to -1.3 +/- 0.3 m/a in the 1990s to 2011. This increase is confirmed by DGPS measurements that indicate increased erosion rates at local rates up to -8.9 m/a since 2006. Ground surveys and observations with remote sensing data indicate that the current rate of shoreline retreat along some parts of the Yukon coast is higher than at any time before in the 64-year-long observation record. Enhanced availability of material in turn might favor the buildup of gravel features, which have been growing in extent throughout the last six decades. Plain Language Summary The Arctic is warming, but the impacts on its coasts are not well documented. To better understand the reaction of Arctic coasts to increasing environmental pressure, shoreline position changes along a 210-km length of the Yukon Territory coast in northwest Canada were investigated for the time period from 1951 to 2015. Shoreline positions were extracted from historical aerial images from the 1950s, 1970s, and 1990s and from satellite images from 2011. Additionally, measurements of shoreline positions from field sites were used to analyze coastal dynamics from 1991 to 2015. The mean shoreline change rate was -1.3 m/a between the 1950s and 1970s and followed by a decrease to -0.5 m/a between the 1970s to 1990s. This was followed by a significant increase in mean shoreline change rates again to -1.3 m/a in the 1990s to 2011 time period. This acceleration in erosion is confirmed by field measurements that indicate increased erosion rates at high local rates up to -8.9 m/a since 2006. Enhanced coastal erosion might, in turn, favor the buildup of gravel features, which have been growing in extent throughout the last six decades.}, language = {en} }