@article{vanKleunenDawsonEssletal.2015, author = {van Kleunen, Mark and Dawson, Wayne and Essl, Franz and Pergl, Jan and Winter, Marten and Weber, Ewald and Kreft, Holger and Weigelt, Patrick and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco J. and Cardenas, Dairon and Cardenas-Toro, Juliana and Castano, Nicolas and Chacon, Eduardo and Chatelain, Cyrille and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Meerman, Jan and Morozova, Olga and Moser, Dietmar and Nickrent, Daniel L. and Patzelt, Annette and Pelser, Pieter B. and Baptiste, Maria P. and Poopath, Manop and Schulze, Maria and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Wieringa, Jan J. and Pysek, Petr}, title = {Global exchange and accumulation of non-native plants}, series = {Nature : the international weekly journal of science}, volume = {525}, journal = {Nature : the international weekly journal of science}, number = {7567}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature14910}, pages = {100 -- +}, year = {2015}, abstract = {All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch(1,2) is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage(3). So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9\% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.}, language = {en} } @article{SeebensEsslDawsonetal.2015, author = {Seebens, Hanno and Essl, Franz and Dawson, Wayne and Fuentes, Nicol and Moser, Dietmar and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Blasius, Bernd}, title = {Global trade will accelerate plant invasions in emerging economies under climate change}, series = {Global change biology}, volume = {21}, journal = {Global change biology}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.13021}, pages = {4128 -- 4140}, year = {2015}, abstract = {Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the 'imperialist dogma,' stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub) tropical regions, yet not by enough to cancel out the trade-related increase.}, language = {en} }