@article{UhlemannFriedrichHinscheetal.1995, author = {Uhlemann, Erhard and Friedrich, Alwin and Hinsche, Gerald and Mickler, Wulfhard and Schilde, Uwe}, title = {Komplexbildung und Metallextraktion mit heterocyclischen ß-Dicarbonylverbindungen im Vergleich : Struktur von 3-Phenyl-4-benzoyl-isoxazol-5-on}, year = {1995}, language = {de} } @article{UhlemannLudwigHefeleetal.1995, author = {Uhlemann, Erhard and Ludwig, Eberhard and Hefele, Heike and Friedrich, Alwin and Kallies, Bernd and Schilde, Uwe and Hahn, Ekkehardt}, title = {Reaktionen und thermisches Verhalten oxofreier Vanadium(IV)-Komplexe. Kristallstrukturen von Methoxo- oxo[thenoyltrifluoraceton-salicylhydrazo-nato(2-)]vanadium(V) und Methoxo-oxo[benzoylaceton-salicylhydra-zonato(2- )]vanadium(V)}, year = {1995}, language = {de} } @article{FriedrichGrunewaldKlinnertetal.1996, author = {Friedrich, Alwin and Grunewald, Karsten and Klinnert, Silke and Bechmann, Wolfgang}, title = {Thermogravimetric and differential thermal analytical investigations on sewage farm soil}, year = {1996}, language = {en} } @article{FriedrichHefeleMickleretal.1998, author = {Friedrich, Alwin and Hefele, Heike and Mickler, Wulfhard and M{\"o}nner, Anke and Uhlemann, Erhard and Scholz, F.}, title = {Voltammetric and potentiometric studies on the stability of vanadium(IV) complexes : a comparision of sulution phase voltammetry with the voltammetry of the microcrystalline solid compounds}, year = {1998}, language = {en} } @article{BenassiBregullaFriedrichetal.1998, author = {Benassi, Rois and Bregulla, Antje and Friedrich, Alwin and Henning, Dietrich and Heydenreich, Matthias and Mickler, Wulfhard and Kleinpeter, Erich and Kempter, Gerhard and Schilde, Uwe and Taddei, F.}, title = {NMR spectroscopic and theoretical structural study of 5-exo-methylene-substituted hydantoins}, year = {1998}, language = {en} } @article{KoetzJagielskiKosmellaetal.2006, author = {Koetz, Joachim and Jagielski, Nicole and Kosmella, Sabine and Friedrich, Alwin and Kleinpeter, Erich}, title = {CdS nanocubes formed in phosphatidylcholin-based template phases}, volume = {288}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2006.01.013}, pages = {43 -- 1-3}, year = {2006}, abstract = {The paper is focused on the characterization and use of phosphatidylcholine (PC)-based inverse microemulsions as a template phase for the CdS nanoparticle formation. The optically clear, isotropic phase in the oil corner was identified as a "classical{\"o} water-in-oil microemulsion by means of NMR-diffusion measurements. Because of the very small dimensions of the water droplets, the isotropic phase shows a Newtonian-like flow behavior, and adequate amounts of bulk water cannot be detected by DSC. It is demonstrated that this w/o microemulsion can be used successfully as a nanoreactor for the formation of CdS nanoparticles with diameters of 4-5 nm. During the following process of solvent evaporation the individual small CdS nanoparticles aggregate to significant larger cubic nanoparticles, with an edge length of 2-40 nm, arranged in well-defined mosaic-like superstructures. In presence of SDS the nanocubes were stable up to 800 °C. It has to be stated here that polyelectrolytes prevent the formation of such well-ordered superstructures.}, language = {en} } @misc{JeličićFriedrichJeremićetal.2009, author = {Jeličić, Aleksandra and Friedrich, Alwin and Jeremić, Katarina and Siekmeyer, Gerd and Taubert, Andreas}, title = {Polymer hydrogel/polybutadiene/iron oxide nanoparticle hybrid actuators for the characterization of NiTi implants}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48589}, year = {2009}, abstract = {One of the main issues with the use of nickel titanium alloy (NiTi) implants in cardiovascular implants (stents) is that these devices must be of very high quality in order to avoid subsequent operations due to failing stents. For small stents with diameters below ca. 2 mm, however, stent characterization is not straightforward. One of the main problems is that there are virtually no methods to characterize the interior of the NiTi tubes used for fabrication of these tiny stents. The current paper reports on a robust hybrid actuator for the characterization of NiTi tubes prior to stent fabrication. The method is based on a polymer/hydrogel/magnetic nanoparticle hybrid material and allows for the determination of the inner diameter at virtually all places in the raw NiTi tubes. Knowledge of the inner structure of the raw NiTi tubes is crucial to avoid regions that are not hollow or regions that are likely to fail due to defects inside the raw tube. The actuator enables close contact of a magnetic polymer film with the inner NiTi tube surface. The magnetic signal can be detected from outside and be used for a direct mapping of the tube interior. As a result, it is possible to detect critical regions prior to expensive and slow stent fabrication processes.}, language = {en} } @article{ShkilnyyGraefHiebletal.2009, author = {Shkilnyy, Andriy and Gr{\"a}f, Ralph and Hiebl, Bernhard and Neffe, Axel T. and Friedrich, Alwin and Hartmann, Juergen and Taubert, Andreas}, title = {Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites}, issn = {1616-5187}, doi = {10.1002/mabi.200800266}, year = {2009}, abstract = {Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite. The PEI/calcium phosphate composite material exhibits a sponge like morphology and a chemical composition that is interesting for implants. Cytotoxicity tests using Dictyostelium discoideum amoebae show that both the non-mineralized and mineralized hydrogels have a very low cytotoxicity. This suggests that next generation PEI hydrogels, where also the degradation products are non-toxic, could be interesting for biomedical applications.}, language = {en} } @article{GoebelHesemannWeberetal.2009, author = {Goebel, Ronald and Hesemann, Peter and Weber, Jens and Moeller, El{\´e}onore and Friedrich, Alwin and Beuermann, Sabine and Taubert, Andreas}, title = {Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids}, issn = {1463-9076}, doi = {10.1039/B821833a}, year = {2009}, abstract = {Mesoporous silica monoliths were prepared by the sol - gel technique and. lled with 1-ethyl-3-methyl imidazolium [Emim]-X (X = dicyanamide [N(CN)(2)], ethyl sulfate [EtSO4], thiocyanate [SCN], and triflate [TfO]) ionic liquids (ILs) using a methanol-IL exchange technique. The structure and behavior of the ILs inside the silica monoliths were studied using X-ray scattering, nitrogen sorption, IR spectroscopy, solid-state NMR, and thermal analysis. DSC finds shifts in both the glass transition temperature and melting points (where applicable) of the ILs. Glass transition and melting occur well below room temperature. There is thus no conflict with the NMR and IR data, which show that the ILs are as mobile at room temperature as the bulk (not confined) ILs. The very narrow line widths of the NMR spectra suggest that the ILs in our materials have the highest mobility reported for confined ILs so far. As a result, our data suggest that it is possible to generate IL/silica hybrid materials (ionogels) with bulk-like properties of the IL. This could be interesting for applications in, e.g., the solar cell or membrane fields.}, language = {en} } @article{AwadConradKochetal.2010, author = {Awad, Duha Jawad and Conrad, Franziska and Koch, Andreas and Friedrich, Alwin and Poeppl, Andreas and Strauch, Peter}, title = {2,2'-Bipyridin-1,2-dithiolat Gemischtligand-Komplexe : Systhese, Charakterisierung und EPR-Spektroskopie}, issn = {0932-0776}, year = {2010}, abstract = {A series of new 2 2'-bipyridine/1 2-dithiolate transition metal complexes has been synthesised and characterised As 1,2-dithiolate ligands 1,2 dithiooxalate (dto) and 1 2-dithiosquarate (dtsq) were used It follows from the IR spectra that the multidentate dithiolate ligands coordinate exclusively via their sulfur atoms forming an MN2S2 coordination sphere The central metal ions (M) are Cu2+ Ni2+ Pd2+ Pt2+, and Zn2+ The complex [Cu-II(bpy)(dto)] could be studied by EPR spectroscopy and was measured as powder diamagnetically diluted in the isostructural [Ni-II(bpy)(dto)] host structure The spin density contribution calculated from the experimental parameters is compared with the electronic situation in the frontier orbitals namely in the semi occupied SOMO of the copper complex derived from quantum chemical calculations on different levels (EHT and DFT)}, language = {de} }