@article{MellingerFloresSuarezSinghetal.2006, author = {Mellinger, Axel and Flores Su{\´a}rez, Rosaura and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Lang, Sidney B. and Gerhard, Reimund}, title = {High-resolution space-charge and polarization tomography with thermal pulses}, isbn = {3-8007-2939-3}, year = {2006}, abstract = {Die Arbeit wurde am 13.03.2006 mit dem "BEST PAPER AWARD" des deutschen IEEE Instrumentation and Measurement (I\&M) Chapter ausgezeichnet.}, language = {en} } @article{MellingerFloresSuarezSinghetal.2007, author = {Mellinger, Axel and Flores Su{\´a}rez, Rosaura and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Zerst{\"o}rungsfreie Tomographie von Raumladungs- und Polarisationsverteilungen mittles W{\"a}rmepulsen}, issn = {0171-8096}, doi = {10.1524/teme.2007.74.9.437}, year = {2007}, abstract = {Non-destructive, three-dimensional imaging of space-charge and polarization distributions in electret materials has been implemented by means of laser-induced thermal pulses. In pyroelectric films of poled poly(vinylidene fluoride), images of up to 45 x 45 pixels with a depth resolution of less than 0.5 mu m and a lateral resolution of 40 mu m were recorded, the latter being limited by fast thermal diffusion in the absorbing metallic front electrode. Initial applications include the analysis of polarization distributions in corona-poled piezoelectric sensor cables and the detection of patterned space-charge distributions in polytetrafluoroethylene films.}, language = {de} } @article{FloresSuarezGanesanWirgesetal.2010, author = {Flores Su{\´a}rez, Rosaura and Ganesan, Lakshmi Meena and Wirges, Werner and Gerhard, Reimund and Mellinger, Axel}, title = {Imaging liquid crystals dispersed in a ferroelectric polymer matrix by means of thermal-pulse tomography}, issn = {1070-9878}, doi = {10.1109/TDEI.2010.5539683}, year = {2010}, abstract = {A new arrangement of the optical elements in a Thermal-Pulse-Tomography (TPT) setup allows to scan micrometer structures in composite and heterogeneous samples such as polymer-dispersed liquid crystals (PDLCs). The non-destructive TPT technique allows the determination of three-dimensional profiles of polarization and space charge in dielectrics. The samples under study were 12 mu m thick films of a copolymer of vinylidene fluoride with trifluoroethylene P(VDF- TrFE) (65/35) with embedded liquid-crystal droplets. The poling process was performed in direct contact well above the coercive field of the copolymer. The 3D map obtained from scanning with a 10 mu m wide spot shows elliptically shaped areas with liquid-crystal droplets. Considering the droplets as oblate spheroids, their major axis lies in the x-y plane, while their minor axis in the z direction measures 0.5 mu m or more. This result is in good agreement with scanning electron micrographs. It is believed that the major axis is overestimated due to imaging of liquid-crystal clusters.}, language = {en} } @article{PhamPetreBerquezetal.2009, author = {Pham, Cong Duc and Petre, Anca and Berquez, Laurent and Flores Su{\´a}rez, Rosaura and Mellinger, Axel and Wirges, Werner and Gerhard, Reimund}, title = {3D high-resolution mapping of polarization profiles in thin poly(vinylidenefluoride-trifluoroethylene) (PVDF- TrFE) films using two thermal techniques}, issn = {1070-9878}, doi = {10.1109/TDEI.2009.5128505}, year = {2009}, abstract = {In this paper, two non-destructive thermal methods are used in order to determine, with a high degree of accuracy, three-dimensional polarization distributions in thin films (12 mu m) of poly(vinylidenefluoride- trifluoroethylene) (PVDF-TrFE). The techniques are the frequency-domain Focused Laser Intensity Modulation Method (FLIMM) and time-domain Thermal-Pulse Tomography (TPT). Samples were first metalized with grid-shaped electrode and poled. 3D polarization mapping yielded profiles which reproduce the electrode-grid shape. The polarization is not uniform across the sample thickness. Significant polarization values are found only at depths beyond 0.5 mu m from the sample surface. Both methods provide similar results, TPT method being faster, whereas the FLIMM technique has a better lateral resolution.}, language = {en} } @article{FloresSuarezMellingerWegeneretal.2006, author = {Flores Su{\´a}rez, Rosaura and Mellinger, Axel and Wegener, Michael and Wirges, Werner and Gerhard, Reimund and Singh, Rajeev}, title = {Thermal-pulse tomography of polarization distributions in a cylindrical geometry}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {13}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {IEEE}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2006.258210}, pages = {1030 -- 1035}, year = {2006}, abstract = {Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries.}, language = {en} } @phdthesis{FloresSuarez2011, author = {Flores Su{\´a}rez, Rosaura}, title = {Three-dimensional polarization probing in polymer ferroelectrics, polymer-dispersed liquid crystals, and polymer ferroelectrets}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60173}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {A key non-destructive technique for analysis, optimization and developing of new functional materials such as sensors, transducers, electro-optical and memory devices is presented. The Thermal-Pulse Tomography (TPT) provides high-resolution three-dimensional images of electric field and polarization distribution in a material. This thermal technique use a pulsed heating by means of focused laser light which is absorbed by opaque electrodes. The diffusion of the heat causes changes in the sample geometry, generating a short-circuit current or change in surface potential, which contains information about the spatial distribution of electric dipoles or space charges. Afterwards, a reconstruction of the internal electric field and polarization distribution in the material is possible via Scale Transformation or Regularization methods. In this way, the TPT was used for the first time to image the inhomogeneous ferroelectric switching in polymer ferroelectric films (candidates to memory devices). The results shows the typical pinning of electric dipoles in the ferroelectric polymer under study and support the previous hypotheses of a ferroelectric reversal at a grain level via nucleation and growth. In order to obtain more information about the impact of the lateral and depth resolution of the thermal techniques, the TPT and its counterpart called Focused Laser Intensity Modulation Method (FLIMM) were implemented in ferroelectric films with grid-shaped electrodes. The results from both techniques, after the data analysis with different regularization and scale methods, are in total agreement. It was also revealed a possible overestimated lateral resolution of the FLIMM and highlights the TPT method as the most efficient and reliable thermal technique. After an improvement in the optics, the Thermal-Pulse Tomography method was implemented in polymer-dispersed liquid crystals (PDLCs) films, which are used in electro-optical applications. The results indicated a possible electrostatic interaction between the COH group in the liquid crystals and the fluorinate atoms of the used ferroelectric matrix. The geometrical parameters of the LC droplets were partially reproduced as they were compared with Scanning Electron Microscopy (SEM) images. For further applications, it is suggested the use of a non-strong-ferroelectric polymer matrix. In an effort to develop new polymerferroelectrets and for optimizing their properties, new multilayer systems were inspected. The results of the TPT method showed the non-uniformity of the internal electric-field distribution in the shaped-macrodipoles and thus suggested the instability of the sample. Further investigation on multilayers ferroelectrets was suggested and the implementation of less conductive polymers layers too.}, language = {en} }