@article{KhattariRuschelWenetal.2005, author = {Khattari, Z. and Ruschel, Y. and Wen, H. Z. and Fischer, Anna and Fischer, T. M.}, title = {Compactification of a myelin mimetic Langmuir monolayer upon adsorption and unfolding of myelin basic protein}, issn = {1520-6106}, year = {2005}, abstract = {The surface shear viscosity of a myelin mimetic Langmuir monolayer is investigated upon adsorption of myelin basic protein (MBP). We measure an increase of the surface shear viscosity at picomolar concentrations of the protein, suggesting that the globular conformation of MBP changes upon adsorption at the monolayer. The conformational change enables hydrodynamic interactions of the proteins, with a typical separation of hundreds of nanometers. This unfolding is essential for the compactification of the myelin sheath, serving an enhanced saltatory signal transduction in vertebrates. The viscometry used extends the sensitivity of standard surface viscometers toward lower viscosities}, language = {en} } @article{NeumannKielbRustametal.2017, author = {Neumann, Bettina and Kielb, Patrycja and Rustam, Lina and Fischer, Anna and Weidinger, Inez M. and Wollenberger, Ulla}, title = {Bioelectrocatalytic Reduction of Hydrogen Peroxide by Microperoxidase-11 Immobilized on Mesoporous Antimony-Doped Tin Oxide}, series = {ChemElectrChem}, volume = {4}, journal = {ChemElectrChem}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201600776}, pages = {913 -- 919}, year = {2017}, abstract = {The heme-undecapeptide microperoxidase-11 (MP-11) was immobilized on mesoporous antimony-doped tin oxide (ATO) thin-film electrodes modified with the positively charged binding promotor polydiallyldimethylammonium chloride. Surface concentrations of MP-11 of 1.5 nmol cm(-2) were sufficiently high to enable spectroelectrochemical analyses. UV/Vis spectroscopy and resonance Raman spectroscopy revealed that immobilized MP-11 adopts a six-coordinated low-spin conformation, as in solution in the presence of a polycation. Cathodic reduction of hydrogen peroxide at potentials close to +500mV versus Ag/AgCl indicates that the reaction proceeds via a Compound I-type like intermediate, analogous to natural peroxidases, and confirms mesoporous ATO as a suitable host material for adsorbing the heme-peptide in its native state. A hydrogen peroxide sensor is proposed by using the bioelectrocatalytic properties of the MP-11-modified ATO.}, language = {en} } @article{FrascaMilanGuietetal.2013, author = {Frasca, Stefano and Milan, Anabel Molero and Guiet, Amandine and Goebel, Caren and Perez-Caballero, Fernando and Stiba, Konstanze and Leimk{\"u}hler, Silke and Fischer, Anna and Wollenberger, Ursula}, title = {Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes-Electrochemical characterization and direct enzyme communication}, series = {ELECTROCHIMICA ACTA}, volume = {110}, journal = {ELECTROCHIMICA ACTA}, number = {2}, publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, address = {OXFORD}, issn = {0013-4686}, doi = {10.1016/j.electacta.2013.03.144}, pages = {172 -- 180}, year = {2013}, abstract = {In this paper we report immobilization and bioelectrocatalysis of human sulfite oxidase (hSO) on nanostructured antimony doped tin oxide (ATO) thin film electrodes. Two types of ATO thin film electrodes were prepared via evaporation induced self-assembly of ATO nanoparticle sols. The use of a porogen results in different porosity and film thickness. Nevertheless both electrode types reveal similar quasi reversible electrochemical behavior for positive and negatively charged small mediators. Facile and durable immobilization of catalytically active enzyme in a direct electron transfer configuration was achieved without further chemical modification of the ATO surfaces. Interestingly, the binding of hSO onto the ATO surface seems to be not only of electrostatic nature, but also originates from a strong interaction between the histidine-tag of the enzyme and the supporting material. This is suggested from stable sulfite dependent bioelectrocatalytic signals at high ionic strength and imidazole desorption experiments. As such, ATO appears as a promising conductive platform for the immobilization of complex enzymes and their application in bioelectrocatalysis. (C) 2013 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SivanesanKalaivaniFischeretal.2012, author = {Sivanesan, Arumugam and Kalaivani, Govindasamy and Fischer, Anna and Stiba, Konstanze and Leimk{\"u}hler, Silke and Weidinger, Inez M.}, title = {Complementary surface-enhanced resonance raman Spectroscopic Biodetection of mixed protein solutions by Chitosan- and Silica-Coated Plasmon-Tuned Silver Nanoparticles}, series = {Analytical chemistry}, volume = {84}, journal = {Analytical chemistry}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac301001a}, pages = {5759 -- 5764}, year = {2012}, abstract = {Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b(5), whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.}, language = {en} } @article{YarmanNagelGajovicEichelmannetal.2011, author = {Yarman, Aysu and Nagel, Thomas and Gajovic-Eichelmann, Nenad and Fischer, Anna and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Bioelectrocatalysis by Microperoxidase-11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {23}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1040-0397}, doi = {10.1002/elan.201000535}, pages = {611 -- 618}, year = {2011}, abstract = {We report on the redox behaviour of the microperoxidase-11 (MP-11) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. MP-11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP-11 at high scan rate is between 350+/-50 pmol cm(-2), which reflects a multilayer process. The formal potential (E degrees') of MP-11 in the gold nanoparticles-chitosan film was estimated to be -(267.7+/-2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (k(s)) starts at 1.21 s(-1) and levels off at 6.45 s(-1) in the scan rate range from 0.1 to 2.0 V s(-1). Oxidation and reduction of MP-11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP-11.}, language = {en} } @article{GuietGoebelKlinganetal.2015, author = {Guiet, Amandine and Goebel, Caren and Klingan, Katharina and Lublow, Michael and Reier, Tobias and Vainio, Ulla and Kraehnert, Ralph and Schlaad, Helmut and Strasser, Peter and Zaharieva, Ivelina and Dau, Holger and Driess, Matthias and Polte, Joerg and Fischer, Anna}, title = {Hydrophobic Nanoreactor Soft-Templating: A Supramolecular Approach to Yolk@Shell Materials}, series = {Advanced functional materials}, volume = {25}, journal = {Advanced functional materials}, number = {39}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201502388}, pages = {6228 -- 6240}, year = {2015}, abstract = {Due to their unique morphology-related properties, yolk@shell materials are promising materials for catalysis, drug delivery, energy conversion, and storage. Despite their proven potential, large-scale applications are however limited due to demanding synthesis protocols. Overcoming these limitations, a simple soft-templated approach for the one-pot synthesis of yolk@shell nanocomposites and in particular of multicore metal nanoparticle@metal oxide nanostructures (M-NP@MOx) is introduced. The approach here, as demonstrated for Au-NP@ITOTR (ITOTR standing for tin-rich ITO), relies on polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) inverse micelles as two compartment nanoreactor templates. While the hydrophilic P4VP core incorporates the hydrophilic metal precursor, the hydrophobic PS corona takes up the hydrophobic metal oxide precursor. As a result, interfacial reactions between the precursors can take place, leading to the formation of yolk@shell structures in solution. Once calcined these micelles yield Au-NP@ITOTR nanostructures, composed of multiple 6 nm sized Au NPs strongly anchored onto the inner surface of porous 35 nm sized ITOTR hollow spheres. Although of multicore nature, only limited sintering of the metal nanoparticles is observed at high temperatures (700 degrees C). In addition, the as-synthesized yolk@shell structures exhibit high and stable activity toward CO electrooxidation, thus demonstrating the applicability of our approach for the design of functional yolk@shell nanocatalysts.}, language = {en} } @article{GuietUnmuessigGoebeletal.2016, author = {Guiet, Amandine and Unm{\"u}ssig, Tobias and G{\"o}bel, Caren and Vainio, Ulla and Wollgarten, Markus and Driess, Matthias and Schlaad, Helmut and Polte, J{\"o}rg and Fischer, Anna}, title = {Yolk@Shell Nanoarchitectures with Bimetallic Nanocores - Synthesis and Electrocatalytic Applications}, series = {Earth \& planetary science letters}, volume = {8}, journal = {Earth \& planetary science letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b06595}, pages = {28019 -- 28029}, year = {2016}, language = {en} } @phdthesis{Fischer2008, author = {Fischer, Anna}, title = {"Reactive hard templating" : from carbon nitrides to metal nitrides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19777}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nanostructured inorganic materials are routinely synthesized by the use of templates. Depending on the synthesis conditions of the product material, either "soft" or "hard" templates can be applied. For sol-gel processes, usually "soft" templating techniques are employed, while "hard" templates are used for high temperature synthesis pathways. In classical templating approaches, the template has the unique role of structure directing agent, in the sense that it is not participating to the chemical formation of the resulting material. This work investigates a new templating pathway to nanostructured materials, where the template is also a reagent in the formation of the final material. This concept is described as "reactive templating" and opens a synthetic path toward materials which cannot be synthesised on a nanometre scale by classical templating approaches. Metal nitrides are such kind of materials. They are usually produced by the conversion of metals or metal oxides in ammonia flow at high temperature (T > 1000°C), which make the application of classical templating techniques difficult. Graphitic carbon nitride, g-C3N4, despite its fundamental and theoretical importance, is probably one of the most promising materials to complement carbon in material science and many efforts are put in the synthesis of this material. A simple polyaddition/elimination reaction path at high temperature (T = 550°C) allows the polymerisation of cyanamide toward graphitic carbon nitride solids. By hard templating, using nanostructured silica or aluminium oxide as nanotemplates, a variety of nanostructured graphitic carbon nitrides such as nanorods, nanotubes, meso- and macroporous powders could be obtained by nanocasting or nanocoating. Due to the special semi-conducting properties of the graphitic carbon nitride matrix, the nanostructured graphitic carbon nitrides show unexpected catalytic activity for the activation of benzene in Friedel-Crafts type reactions, making this material an interesting metal free catalyst. Furthermore, due to the chemical composition of g-C3N4 and the fact that it is totally decomposed at temperatures between 600°C and 800°C even under inert atmosphere, g-C3N4 was shown to be a good nitrogen donor for the synthesis of early transition metal nitrides at high temperatures. Thus using the nanostructured carbon nitrides as "reactive templates" or "nanoreactors", various metal nitride nanostructures, such as nanoparticles and porous frameworks could be obtained at high temperature. In this approach the carbon nitride nanostructure played both the role of the nitrogen source and of the exotemplate, imprinting its size and shape to the resulting metal nitride nanostructure.}, language = {en} }