@misc{ElsenbeerCasselZuniga1994, author = {Elsenbeer, Helmut and Cassel, Keith and Zu{\~n}iga, L.}, title = {Throughfall in the terra firme forest of Western Amazonia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16955}, year = {1994}, abstract = {Throughfall measurements were made under primary terra firme rainforest in the Rio Pichis valley, in the Upper Amazon Basin of Peru. Based on 214 precipitation events over nearly 18 months, throughfall was estimated to be 83.1±8.8\% of gross precipitation. Regression analysis of all events revealed that gross precipitation is the only significant explanatory variable; the use of one-burst events does not significantly improve the regression relationship. Gross precipitation is, however, a poor predictor of throughfall for small rainfall events. The two forest structure parameters, canopy capacity, S, and free throughfall coefficient, p, were determined to be 1.3±0.2 mm and 0.32±0.18 mm. Rainfall intensity was found to influence these parameters. New methods which attempt to minimize the influence of meteorologic variables are used to estimate the potential values of these canopy parameters.}, language = {en} } @misc{ElsenbeerLackCassel1995, author = {Elsenbeer, Helmut and Lack, Andreas and Cassel, Keith}, title = {Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16937}, year = {1995}, abstract = {A forested first-order catchment in western Amazonia was monitored for 2 years to determine the chemical fingerprints of precipitation, throughfall, overland flow, pipe flow, soil water, groundwater, and streamflow. We used five tracers (hydrogen, calcium, magnesium, potassium, and silica) to distinguish "fast" flow paths mainly influenced by the biological subsystem from "slow" flow paths in the geochemical subsystem. The former comprise throughfall, overland flow, and pipe flow and are characterized by a high potassium/silica ratio; the latter are represented by soil water and groundwater, which have a low potassium/silica ratio. Soil water and groundwater differ with respect to calcium and magnesium. The groundwater-controlled streamflow chemistry is strongly modified by contributions from fast flow paths during precipitation events. The high potassium/silica ratio of these flow paths suggests that the storm flow response at La Cuenca is dominated by event water.}, language = {en} } @misc{ElsenbeerLorieriBonell1995, author = {Elsenbeer, Helmut and Lorieri, Daniel and Bonell, Mike}, title = {Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16948}, year = {1995}, abstract = {Previous hydrometric studies demonstrated the prevalence of overland flow as a hydrological pathway in the tropical rain forest catchment of South Creek, northeast Queensland. The purpose of this study was to consider this information in a mixing analysis with the aim of identifying sources of, and of estimating their contribution to, storm flow during two events in February 1993. K and acid-neutralizing capacity (ANC) were used as tracers because they provided the best separation of the potential sources, saturation overland flow, soil water from depths of 0.3, 0.6, and 1.2 m, and hillslope groundwater in a two-dimensional mixing plot. It was necessary to distinguish between saturation overland flow, generated at the soil surface and following unchanneled pathways, and overland flow in incised pathways. This latter type of overland flow was a mixture of saturation overland flow (event water) with high concentrations of K and a low ANC, soil water (preevent water) with low concentrations of K and a low ANC, and groundwater (preevent water) with low concentrations of K and a high ANC. The same sources explained the streamwater chemistry during the two events with strongly differing rainfall and antecedent moisture conditions. The contribution of saturation overland flow dominated the storm flow during the first, high-intensity, 178-mm event, while the contribution of soil water reached 50\% during peak flow of the second, low-intensity, 44-mm event 5 days later. This latter result is remarkably similar to soil water contributions to storm flow in mountainous forested catchments of the southeastern United States. In terms of event and preevent water the storm flow hydrograph of the high-intensity event is dominated by event water and that of the low-intensity event by preevent water. This study highlights the problems of applying mixing analyses to overland flow-dominated catchments and soil environments with a poorly developed vertical chemical zonation and emphasizes the need for independent hydrometric information for a complete characterization of watershed hydrology and chemistry.}, language = {en} } @misc{ElsenbeerWestBonell1994, author = {Elsenbeer, Helmut and West, Adam and Bonell, Mike}, title = {Hydrologic pathways and stormflow hydrochemistry at South Creek, northeast Queensland}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16904}, year = {1994}, abstract = {Earlier investigations at South Creek in northeastern Queensland established the importance of overland flow as a hydrologic pathway in this tropical rainforest environment. Since this pathway is 'fast', transmitting presumably 'new' water, its importance should be reflected in the stormflow chemistry of South Creek: the greater the volumentric contribution to the stormflow hydrograph, the more similarity between the chemical composition of streamwater and of overland flow is to be expected. Water samples were taken during two storm events in an ephemeral gully (gully A), an intermittent gully (gully B) and at the South Creek catchment outlet; additional spot checks were made in several poorly defined rills. The chemical composition of 'old' water was determined from 45 baseflow samples collected throughout February. The two events differed considerably in their magnitudes, intensities and antecedent moisture conditions. In both events, the stormflow chemistry in South Creek was characterized by a sharp decrease in Ca, Mg, Na, Si, Cl, EC, ANC, alkalinity and total inorganic carbon. pH remained nearly constant with discharge, whereas K increased sharply, as did sulfate in an ill-defined manner. In event 1, this South Creek stormflow pattern was closely matched by the pattern in gully A, implying a dominant contribution of 'new' water. This match was confirmed by the spot samples from rills. Gully B behaved like South Creek itself, but with a dampened 'new' water signal, indicating less overland flow generation in its subcatchment. In event 2, which occurred five days later, the initial 'new' water signal in gully A was rapidly overwhelmed by a different signal which is attributed to rapid drainage from a perched water table. This study shows that stormflow in this rainforest catchment consists predominantly of 'new' water which reaches the stream channel via 'fast' pathways. Where the ephemeral gullies delivering overland flow are incised deeply enough to intersect a perched water table, a delayed, 'old' water-like signal may be transmitted.}, language = {en} } @article{GermerElsenbeerdeMoraes2006, author = {Germer, Sonja and Elsenbeer, Helmut and de Moraes, Jorge M.}, title = {Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rond{\^o}nia, Brazil)}, issn = {1027-5606}, doi = {10.5194/hess-10-383-2006}, year = {2006}, language = {en} } @article{GermerNeillKruscheetal.2010, author = {Germer, Sonja and Neill, Christopher and Krusche, Alex V. and Elsenbeer, Helmut}, title = {Influence of land-use change on near-surface hydrological processes : undisturbed forest to pasture}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2009.11.022}, year = {2010}, abstract = {Soil compaction that follows the clearing of tropical forest for cattle pasture is associated with lower soil hydraulic conductivity and increased frequency and volume of overland flow. We investigated the frequency of perched water tables, overland flow and stormflow in an Amazon forest and in an adjacent 25-year-old pasture cleared from the same forest. We compared the results with the frequencies of these phenomena estimated from comparisons of rainfall intensity and soil hydraulic conductivity. The frequency of perched water tables based on rainfall intensity and soil hydraulic conductivity was expected to double in pasture compared with forest. This corresponded closely with an approximate doubling of the frequency of stormflow and overland flow in pasture. In contrast, the stormflow volume in pasture increased 17-fold. This disproportional increase of stormflow resulted from overland flow generation over large areas of pasture, while overland flow generation in the forest was spatially limited and was observed only very near the stream channel. In both catchments, stormflow was generated by saturation excess because of perched water tables and near-surface groundwater levels. Stormflow was occasionally generated in the forest by rapid return flow from macropores, while slow return flow from a continuous perched water table was more common in the pasture. These results suggest that deforestation for pasture alters fundamental mechanisms of stormflow generation and may increase runoff volumes over wide regions of Amazonia.}, language = {en} } @article{GermerNeillKruscheetal.2007, author = {Germer, Sonja and Neill, Christopher and Krusche, Alex V. and Neto, Sergio Gouveia and Elsenbeer, Helmut}, title = {Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rond{\^o}nia, Brazil}, issn = {0168-2563}, doi = {10.1007/s10533-007-9152-9}, year = {2007}, abstract = {Prolonged dry periods, and increasingly the generation of smoke and dust in partially-deforested regions, can influence the chemistry of rainfall and throughfall in moist tropical forests. We investigated rainfall and throughfall chemistry in a palm-rich open tropical rainforest in the southwestern Brazilian Amazon state of Rondonia, where precipitation averages 2300 mm year(-1) with a marked seasonal pattern, and where the fragmentation of remaining forest is severe. Covering the transition from dry to wet season (TDWS) and the wet season (WS) of 2004-2005, we sampled 42 rainfall events on event basis as well as 35 events on a within-event basis, and measured concentrations of DOC, Na+, K+, Ca2+, Mg2+, NH4+ , Cl-, SO42- , NO3- and pH in rainfall and throughfall. We found strong evidence of both seasonal and within-event solute rainfall concentration dynamics. Seasonal volume-weighted mean (VWMS) concentrations in rainfall of DOC, K+, Ca2+, Mg2+, NH4+ , SO42- and NO3- were significantly higher in the TDWS than the WS, while VWMS concentrations in throughfall were significantly higher for all solutes except DOC. Patterns were generally similar within rain events, with solute concentrations declining sharply during the first few millimeters of rainfall. Rainfall and throughfall chemistry dynamics appeared to be strongly influenced by forest and pasture burning and a regional atmosphere rich in aerosols at the end of the dry season. These seasonal and within-event patterns of rainfall and throughfall chemistry were stronger than those recorded in central Amazonia, where the dry season is less pronounced and where regional deforestation is less severe. Fragmentation and fire in Rondonia now appear to be altering the patterns in which solutes are delivered to remaining moist tropical forests.}, language = {en} } @article{GermerNeillVetteretal.2009, author = {Germer, Sonja and Neill, Christopher and Vetter, Tobias and Chaves, Joaqu{\´i}n E. and Krusche, Alex V. and Elsenbeer, Helmut}, title = {Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2008.11.013}, year = {2009}, abstract = {The replacement of undisturbed tropical forest with cattle pasture has the potential to greatly modify the hydrology of small watersheds and the fluxes of solutes. We examined the fluxes of water, Cl-, NO3--N: SO42---S, NH4+-N, Na+, K+, Mg2+ and Ca2+ in different flow paths in similar to 1 ha catchments of undisturbed open tropical rainforest and a 20 year-old pasture established from forest in the southwestern Brazilian Amazon state of Rondonia. Storm flow discharge was 18\% of incident rainfall in pasture, but only 1\% in forest. Quickflow predominated over baseflow in both catchments and in both wet and dry seasons. In the pasture, groundwater and quickflow were important flow paths for the export of all solutes. In the forest, quickflow was important for NO3--N export, but all other solutes were exported primarily by groundwater outflow. Both catchments were sinks for SO42--S and Ca2+, and sources of Na+. The pasture catchment also lost K+ and Mg2+ because of higher overland flow frequency and volume and to cattle excrement. These results show that forest clearing dramatically influences small watershed hydrology by increasing quickflow and water export to streams. They also indicate that tropical forest watersheds are highly conservative for most solutes but that pastures continue to lose important cations even decades after deforestation and pasture establishment.}, language = {en} } @article{GermerZimmermannNeilletal.2012, author = {Germer, Sonja and Zimmermann, Alexander and Neill, Christopher and Krusche, Alex V. and Elsenbeer, Helmut}, title = {Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest}, series = {Forest ecology and management}, volume = {267}, journal = {Forest ecology and management}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2011.11.041}, pages = {40 -- 49}, year = {2012}, abstract = {Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4\% of total stem number and 10\% of total basal area. For NO3-, stemflow contributed 51\% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest.}, language = {en} } @article{GodseyElsenbeerStallard2004, author = {Godsey, S. and Elsenbeer, Helmut and Stallard, R. F.}, title = {Overland flow generation in two lithologically distinct rainforest catchments}, issn = {0022-1694}, year = {2004}, abstract = {Streams on uniformly rainforest-covered, but lithologically very diverse Barro Colorado Island in central Panamd show remarkable differences in their runoff response to rainfall. This lithological diversity is reflected in equally diverse soilscapes, and our objective was to test the hypothesis that contrasting runoff responses derive from soilscape features that control the generation of overland flow. We determined the soil saturated hydraulic conductivity (K-s) of two neighboring, but hydrologically contrasting catchments (Lutz Creek with a flashy and Conrad Trail with a delayed response to rainfall), and quantified the spatial and temporal frequency of overland flow occurrence. The median K-s values at a depth of 12.5 cm are large enough to rule out Hortonian overland flow, but a marked decrease in K-s in Lutz Creek catchment at 30 cm suggests the formation of a perched water table and the generation saturation overland flow; the decrease in K-s in the Conrad Trail catchment is more gradual, and a perched water table is expected to form only at depths below 50 cm. In Lutz Creek, overland flow was generated frequently in time and space and regardless of topographic position, including near the interfluve, with very low thresholds of storm magnitude, duration, intensity and antecedent wetness, whereas in Conrad Trail, overland flow was generated much less frequently and then only locally. We conclude that soilscape features and microtopography are important controls of overland flow generation in these catchments. Our results contribute to the growing evidence that overland flow and forests are not a priori a contradiction in terms. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} }